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Abstract

This study has two major purposes: (1) to identify causal inference in time-series using Granger

causality tests and Convergent Cross Mapping (Sugihara et al., 2012) (2) to investigate the

economic growth and government expenditure relation in Mexico. Convergent Cross Mapping

(CCM) has shown a high potential to perform causal inference in complex systems and

non-linear system and has been used as an alternative approach to Granger causality. One one

hand, we show that CCM fails to infer causality direction in linear time-series and in time-series

with structural breaks. On the other hand, we demonstrate that Toda-Yamamoto test (Toda

and Yamamoto, 1995) successfully detects causal relation in linear systems and systems with

structural breaks. Besides, we evaluate the causal relation between government expenditure and

economic growth in Mexico then we evaluate the validity of Wagner’s law and the Keynesian

view. The empirical results suggests that Wagner’s law holds for Mexico for the period 1980 to

2010.

Keywords: Causality, Convergent Cross Mapping, Granger Causality Tests, Time Series

Analysis, Government Expenditure, Economic Growth, Mexico
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Chapter 1

Introduction

Causality plays a fundamental and controversial role in the sciences. The objective of research

in causality is to build models that try to explain causal inference and causal explanation. For

this reason, different disciplines, from epidemiology to biology, from econometrics to physics,

have made use of probabilistic and statistics methods in order to infer causal relations. And as a

consequence philosophers, scientists, physics, mathematicians, economists, computer scientists

and many others have studied the field of causation. The exploration of causation is a knowledge

field, which started with the ancient Greeks three thousand years ago. In Metaphysics, Aristotle

maintains that knowing is knowing attending to the causes (Agueda, 2011).

But yet we think that knowledge and understanding belong to art rather than

to experience, and we suppose artists to be wiser than men of experience (which

implies that Wisdom depends in all cases rather on knowledge); and this because

the former know the cause, but the latter do not. For men of experience know that

the thing is so, but do not know why, while the others know the why and the cause.
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CHAPTER 1. INTRODUCTION

Causation plays a different role when examined from different fields. As a social science,

economics was conceived as early as a science of causes. For example, causal inferences and

causal motivations in economics are motivated by policy questions. In this context, the goals of

policy evaluation are to consider the impact of policy interventions on the economy, to estimate

their consequences for economic welfare, and to forecast the effects of new policies.

The base of economic causality was proposed by the philosopher–economists David Hume

contributed to the philosophy of causation in his books A Treatise of Human Nature and An

Enquiry concerning Human Understanding. Both books start with Hume’s axiom known as the

Copy Principle which states that all components of our thoughts come from experience. Also

he argued that our idea of necessary connection, which he concedes as a characteristic element

of causality can appear from our experience.

J. S. Mill another philosopher/economist was skeptical about causality application to

economics. In 1984, Mill published his textbook Principles of Political Economy. In this

work, Mill argued that economics was an ’inexact and separate science’, whose principles were

essentially known a priori and which held only subject to ceteris paribus clauses.

The 18th century, developed the conceptions of causality as “ we may define a cause to

be an object, followed by another, and where all the objects similar to the first are followed by

objects similar to the second”. Then, economics was deeply affected by the philosophy of causal

determinism, which the natural sciences embraced throughout the nineteenth century. That

philosophy is most famously espoused by the philosopher Pierre-Simon Laplace thus (Morck

and Yeung, 2011):
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CHAPTER 1. INTRODUCTION

We may regard the present state of the universe as the effect of its past and the

cause of its future. An intellect which at a certain moment would know all forces

that set nature in motion, and all positions of all items of which nature is composed,

if this intellect were also vast enough to submit these data to analysis, it would

embrace in a single formula the movements of the greatest bodies of the universe

and those of the tiniest atom; for such an intellect nothing would be uncertain and

the future just like the past would be present before its eyes

For this intellect, dubbed Laplace’s demon, every event is a cog in a mechanical chain

stretching back to the beginning of the universe.

A century after Hume’s definition, Granger proposed the idea of Granger causality in 1969.

In that paper, the author described the causal relationships between variables in economic

models. This idea is simple one but has a key requirement which is named separability

(information about a causative factor is independently to that variable and can be taken out by

eliminating the variable from the model) and when it is violated Granger causality calculations

are no longer valid.

Trying to solve last problem, Sugihara et al. (2012) introduced a technique called convergent

cross mapping (CCM) for computing correlation between variables, based on non-linear state

space reconstruction that can distinguish causality from correlation. CCM is fast becoming a

key instrument in wide range of fields including neuroscience, biomedical, climatology and

social interaction. Its wide range of applications already appearing for the CCM method is a

proof of its importance in time-series causality research. In order to know the power of this new

technique, we present an extensive set of examples where the performance of Granger causality

and CCM procedure is measured and compared. These processes will have different natures as

3



CHAPTER 1. INTRODUCTION

stochastic, non-linear or causal.

Besides, we study the relationship between government expenditure and economic growth

in Mexico for the period 1980 - 2015. Current research on this relationship is focused on how

developing countries have faced structural adjustment and enhanced their revenue situation.

We focus on the adjustment process of the public sector. If a government’s total expenditures

exceeds its revenue a high fiscal deficit results and as a consequence, economic performance

could be affected. For this reason the relation between growth of public expenditure and Gross

Domestic Product has considerable attention. For this reason, CCM method is used to estimate

the long-run causality of economic indicators for Mexico. This new methodology will be

compared with existing causal testing procedures.

The rest of this thesis is organized as follows. We begin with a review of previous studies

based on Sugihara et al. (2012) and government expenditure and economic growth relation.

Next chapter introduces a basic idea an algorithm of CCM. Empirical results will presented in

section four. Last part of the thesis describes how economic growth interacts with government

expenditure for Mexico.

4



Chapter 2

Literature Review

In economics, the most influential approach to causality was developed by Clive W. J. Granger

(Granger, 1969) named Granger causality in his honor. In his article, Granger developed

probabilistic approaches to causality, those approaches are calculated to identify cause effects

with a factor that increases the probability of the effect. The initial definition of causality is

a general concept based on minimum variance in a model with a completed set of variables

against a model with a restricted set of those variables. This original definition of causality had

not been restricted in order to reach a form which can be tested, thus Granger (1969) used the

predictability of two variables to define causality between them. Then Granger (1969) defined

causality when a variable xt causes yt if xt contains past information that helps to predict

information of variable yt in present time.

Next sections explain with more detail Granger causality and its weakness with

non-stationary variables and deterministic models.

5
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2.1 Granger Causality test

The method developed by Granger (1969) is applied to stationary variables, if this method

allows non-stationary time-series then variance will depend on time t, as a consequence,

causality may be altered over time.

The first definition given by Granger (1969) supposed a set of variables ut with all

information in the universe accumulated from t−1 and ut−yt which denoted all this information

less information contained in yt. Granger (1969) defined causality as a variable yt causes

variable xt if exist a model with all variables in the universe ut fits better than the model with all

variables less yt information. The best fitted model will be the model with minimum variance,

in this case yt is causing xt if the variance in the model with yt is less than the model without

yt.

σ2(xt | ūt) < σ2(xt | ut − yt), (2.1)

Granger (1969) argued that the variance is not the proper criterion to use to measure good

predictors for xt. This means that if some other criteria were used to predict variables then

it is possible to reach different conclusions about whether one variable is causing another.

Although, the variance seem to be a natural criterion to use in connection with linear predictor,

this criterion of causality is restricted in order to reach a criteria which can be tested.

With the last idea in mind, Granger (1969) used a definition of causality based entirely on

the predictability of time-series. In this way, Granger causality can be defined as follows: “a

time-series xt is said Granger causes a time-series yt, if past values of xt contain information

6
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that help predict yt”. One of the most used ways to test Granger causality is to model an

autoregressive process of a bivariate vector autoregression (VAR). Given a finite lag m, the

following equation is estimated

xt = c1 +
m∑
i=1

αixt−i +
m∑
i=1

βiyt−i + εt, (2.2)

yt = c2 +
m∑
i=1

γixt−i +
m∑
i=1

δiyt−i + ηt,

where α, β, γ, δ, c1 and c2 are coefficients and εt and ηt are two uncorrelated white-noise

time-series. The null hypothesis that will be tested is that yt does not Granger-cause xt, in other

words

H0 : β1 = β2 = . . . = βm = 0,

Thus, given Equation 2.2 yt causes xt if some βi is not zero. Similarity, xt Granger-cause

yt if some γi is not zero. Granger (1969) defined feedback relation if both of these events occur.

Wald test could be used to test the null hypothesis in this cases.

It is important to emphasise that the definitions above assumed that only stationary

time-series are involved. The existence of unit root in the variables and cointegration between

variables could make the asymptotic inference invalid. As a consequence of lack of stationary

in variables, we could fail to reject the null hypothesis when stationary variables must reject

the hypothesis. Besides, it is possible to obtain a spurious regression, as a consequence, the

regression model could have a high R2 even when the time-series are independent of each other

(Granger and Newbold, 1974). Before proceeding to examine unit root tests, it will be necessary
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to define stationarity of time-series.

2.1.1 Stationarity of time-series

Stationarity is a property of a process which ensure that its mean, variance and other moments

do not change when time is shifted. For example, white noise is a stationary time-series because

it does not follow any trend and its mean and variance do not change over time. Stationarity can

usually be defined as strict and weakly stationarity.

Definition 2.1.1. Strongly stationarity: The process yt is strong stationary if the joint

distribution [yt, yt+1, . . . , yt+k, yt+k+1] is equal for any t.

In other words, strict stationarity means that the joint distribution only depends on the

difference k, not the time t.

Definition 2.1.2. Weakly stationarity: The process yt is weakly stationary, or

covariance-stationary if :

• E(yt) = E(yt−j) = µ,

• E[(yt − µ)2] = E[(yt−j − µ)2] = σ2 <∞,

• E[(yt − µ)(yt−j − µ)] = E[(yt−k − µ)(yt−j−k − µ)] = γj ,

where µ, σ2 and γj are all constants.

8
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In other words, a weak stationary time-series must have three characteristics: finite variance,

constant mean and the second moment γj only depend on (t− j).

If a time-series shows a trend or is affected by a persistent innovation, it is possible to test

whether it is stationarity to get round the problem or to understand its possible effects. This kind

of tests are called unit root tests and it can be used to determine if trending data should be first

differenced or regressed on deterministic functions of time to convert the data stationary. The

pioneering work on testing for a unit root in time-series was done by Dickey and Fuller (1979)

in next section we explain the basic objective of the unit-root test.

2.1.2 Unit root test

Many economic time-series exhibit trending behaviour or non-stationary in the mean. Unit root

tests can be used to determinate if trending data should be first differenced to obtain a stationary

process. Furthermore unit root tests can be used to establish an order of integration. Order

of integration, denoted I(d) display the minimum number of differences required to obtain a

stationary time-series.

To understand the notion of unit root, consider the following processes yt1 , yt2 and yt3 define

as:

yt1 = u1 + yt1−1 + µt1 , (2.3)

yt2 = u2 + βt+ µt2 , (2.4)

yt3 = yt3−1 + µt3 , (2.5)

9
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Rewriting equation 2.3 as:

(1− L)yt1 = u1 + µt1 , (2.6)

where L is the lag operator. In this case equation 2.6 has two roots, one of them is equal to

one and as consequence the process has a unit root. Using equations 2.3, 2.4 and 2.5, we define

equation 2.7

yt = u+ βt+ yt−1 + µt. (2.7)

If we take 2.7, subtract yt−1 from both sides and introduce the artificial parameter γ, we

obtain:

yt − yt−1 = γu+ γβt+ (γ − 1)yt−1 + µt

= a0 + a1t+ (γ − 1)yt−1 + µt (2.8)

where by hypothesis γ = 1. Equation 2.8 supplies the basis for unit root test where if (γ−1) = 0

gives confirmation of a random walk with a drift as equation 2.3, if (γ−1) < 0 then the evidence

favors the trend stationary. So, we have to test the next null hypothesis:

H0 : γ = 1 or (γ − 1) = 0 =⇒ series contains a unit root

H1 : γ < 1 or (γ − 1) < 0 =⇒ series is stationaty

Moreover, if the process is non-stationary and the first difference of the process is stationary,

the process contains a unit root. The commonly used methods to test for the presence of unit

10
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root are the Augmented Dickey-Fuller (ADF) tests (Dickey and Fuller, 1979), Phillip-Perron

test (Phillips and Perron, 1988) and KPSS (Kwiatkowski et al., 1992).

In 1989, Perron discussed that most macroeconomic time-series are not characterized by

a unit root but rather that persistence arises only from large and unusual shocks, and that the

economy returns to deterministic trend after small and frequent shocks. Then Perron (1989)

argued that if a process experiences a structural break then the unit root test is biased towards

the no rejection of the null hypothesis. In fact, Perron used a modified Dickey-Fuller unit root

test that includes dummy variables to account for one exogenous structural break. In 2005,

Kapetanios developed a test for the unit root hypothesis against the emergence of an unspecified

number of breaks in a time-series.

2.1.3 Structural breaks and Kapetanios test

Taking account the test of Perron, recent analysis of time-series data has been focused on

more than one structural break. Kapetanios (2005) provided a test for the unit root hypothesis

with drift but no breaks against an alternative hypothesis of a trend stationary process with an

unspecified number of breaks in the trend or constant. The proposed test follows a sequential

Dickey-Fuller test (explained above 2.1.2 and is defined as:

yt = µ0 + µ1t+ αyt−1 +
k∑
i=1

γi∆yt−i +
m∑
i=1

φiDUi,t +
m∑
i=1

ϕiDTi,t + εt, (2.9)

1 − γ(L) has all its roots outside the unit circle, where γ(L) = γ1L + . . . + γkL
k. DUi,t and

DTi,t are intercept and trend break dummy variables respectively and are defined by:

11
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DUi,t = 1(t > Tb,i),

DTi,t = 1(t > Tb,i)(t− Tb,i),

where Tb,i + 1 denotes the date of the ith structural break and 1(·) is the indicator function.

The possibly spurious relationship between two variables has been solved with first

difference each series and then it is possible to calculate the regression. However, a major

problem with this kind of application is that valuable long-run information may be lost. Then

another potential problem is to find a way to work with two possibly non-stationary time-series

in a model that allows us to capture both short run and long run effects. The solution is called

cointegration and it is the link between processes with the same order of integration and steady

state equilibrium.

2.1.4 Cointegration

When there is evidence favorable to the unit root hypothesis in all variables is possible to

develop models that conduct to stationary relations among the variables and where standard

inference is possible. The criteria for stationarity among non-stationary variables is called

cointegration.

Consider the simplest stochastic trend model:

yt = µy + βyxt + εyt, (2.10)

12
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xt = xt−1 + εxt, (2.11)

=
t∑
i=1

εxi,

where εyt and εxt are stationary series. In this case yt and xt contain a unit root. Besides, we can

write yt as:

yt = µy + βyxt + εyt, (2.12)

= µy + βy{xt−1 + εxt}+ εyt,

= µy + βy

t∑
i=1

εxi + εyi,

now it is easy to see that yt is a non-stationary process. In this model yt and xt are non-stationary

time-series data with the same integration order. There are several tests of cointegration, the

first test of cointegration was proposed by Engle and Granger (1987). The test captures equation

2.12 and sorts it as:

yt − µt − βyxt = εyt, (2.13)

The idea of Engle and Granger cointegration is to take a linear combination of variables

with the same order of integration and obtain a variable with a less order of integration. In this

case, εyt is stationary. Even, tests for cointegration (Engle and Granger, 1987) and cointegration

rank have been developed as Johansen (1988) who based on VAR representation of time-series,

simulation experiments have showed that the test is sensitive to values of parameters in finite

samples and hence not very reliable for sample sizes that are typical for economic time-series.

13
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Besides, Engel and Granger noted that while two variables are non-stationary and cointegrated,

the standard Granger causal inference will be invalid.

To mitigate these problems, Toda and Yamamoto (1995) presented a simple way to overcome

the problems in the testing that we find when VAR processes may have some unit roots.

Toda-Yamamoto test is applicable whether the VAR’s may be stationary (around a deterministic

trend), integrated of an arbitrary order, or cointegrated of an arbitrary order. The following

section will explain Toda-Yamamoto work.

2.1.5 Toda and Yamamoto test

Toda and Yamamoto (1995) based on VAR modeling, introduced a modified Wald test. Firstly,

Toda-Yamamoto test find the maximum order of integration of the time-series and secondly

an optimal number of lags. Toda and Yamamoto (1995) augmented Granger causality test

procedure, which is based on the following assumptions.

Let yt sequence be generated by the following function:

yt = β0 + β1t+ . . .+ βqt
q + ηt,

where ηte contains an order of integration equal to d. In particular, ηt is a vector

autoregression with k lag length and it can be presented as :

ηt = J1ηt−1 + . . .+ Jkηt−k + εt,

14
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where k is assumed to be known and εt is an i.i.d sequence of random vectors with mean

zero and finite variance.

Substituting ηt = yt − β0 − β1t− . . .− βqtq into first equation, getting

yt = γ0 + γ1t+ . . .+ γqt
q + J1yt−1 + . . .+ Jkyt−k + εt,

Where γi is function of βi. As order of integration d > 0, the order of trend γ might be lower

than order q. Assume d = 1 and q = 1, γ2 = γ3 = . . . = γq = 0. Then

yt = γ0 + γ1t+ J1yt−1 + . . .+ Jkyt−k + εt,

Toda and Yamamoto (1995) were interested in the significance of coefficient of lagged yt

and not in whether the process yt is integrated, cointegrated or stationary. Then the hypothesis

is formulated as:

H0 : J1 = J2 = . . . = Jk = 0

Then k is the optimal lagged length and any additional lag are indifferent from zero.

Thus, Toda-Yamamoto test could be estimate a VAR with (k + dmax) order, where dmax is

the maximal order of integration and k the optimal lagged coefficient jointly. For example,

Toda-Yamamoto augmented Granger causality method for two time-series is calculated with the

following equations
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yt = αx +
k+d∑
i=1

βiyt−i +
k+d∑
j=1

γjxt−j + uxt, (2.14)

xt = αy +
k+d∑
i=1

δixt−i +
k+d∑
j=1

εjyt−j + uyt,

where uxt and uyt are assumed to be white noise with zero mean and constant variance. If

we want to see if xt affects yt, we have to test the null hypothesis

H0 : γ1 = γ2 = . . . = γj = 0,

Ha : Some γj is not zero,

If the null hypothesis is rejected then xt causes yt. Next alternative null hypothesis test

reverses the influential direction

H0 : ε1 = ε2 = . . . = εj = 0,

Ha : Some εj is not zero,

As this null hypothesis is rejected, we can say that yt causes xt. Thus, Granger causality

could be determined when time-series are stationary or non-stationary.

Hovewer, it is important to remark the key requirement of any Granger causality test, which

is separability, namely that information about a causative factor is independently to that variable

and can be taken out by eliminating the variable from the model (as indicated on the right side

of equation 2.1). When this requirement is violated Granger causality calculations are no longer

valid. Trying to solve this problem, Sugihara et al. (2012) proposed a new causal test, which
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named Convergent Cross Mapping (CCM) that is based on the theory of dynamical systems and

can be applied to systems where causal variables have synergistic effects.

2.2 Convergent Cross Mapping

CCM is related to a simplex projection which forecast a point in time t + 1 for a time-series

x, by using points with similar histories from a variable y. This technique is based on Takens’

theorem (Takens, 1981), that showed how lagged variables of a single processes can be used

as proxy variables to reconstruct an attractor for a dynamic model. Using the last idea, Deyle

and Sugihara (2011) expanded the concept of state space reconstruction (SSR) to the analysis

of the complex, nonlinear systems that appear ubiquitous in the natural, including dynamically

coupled processes in the reconstructions of an attractor. In an extension of these ideas, Hsieh

et al. (2008) introduced a useful method that avoid data limitation and reduces sampling error

by combining similar time-series into a long time-series.

Thus, Sugihara et al. (2012) exposed CCM method based on nonlinear state space

reconstruction, that can distinguish causality from correlation. Besides, Sugihara suggest the

use of CCM in situations where Granger causality is known to be invalid. Several publications

have appeared in recent years documenting implementations of CCM. One of the first examples

of applications of CCM is presented in Heskamp et al. (2013), where the authors explored the

usability of CCM as a nonlinear analysis technique to assess cerebral regulation and changes

in arterial blood pressure. Meanwhile, Luo et al. (2014) use the nonlinear nature of social

interactions and adopt CCM to perform causal inference in online social networks on three

different social media websites, including Twitter, Sina Weibo (a popular microblog website in
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China) and Digg. The latter approach allows authors to infer a causal relationship for any pair

of users based on the user activity. Moreover, Tsonis et al. (2015) used CCM to measure causal

link between solar activity measured as galactic cosmic rays and year-to-year changes in global

temperature. At the same time, Maher and Hernandez (2015) present the first publicly available,

open source implementation of CCM (as an official Julia package1). Maher and Hernandez

(2015) mention some applications as personalized microbiome therapy and metabolic dynamics

analysis.

The above mentioned studies show that CCM calculations can successfully uncover the

underlying causal structure in each systems. Nonetheless, McCracken and Weigel (2014) show

that the relationships between CCM correlations proposed by Sugihara et al. (2012) do not, in

general, provide consistent qualification of an intuitive notion of causality in a system. The

examples given by the authors cannot lead a conclusion about causality that agree with intuition

in the system. In those cases, causality can depend on system parameters. Besides, Mønster

et al. (2016) found that CCM could fail to infer causality when the coupling is so strong or

weak. And they showed that the presence of noise reduce fidelity in cross-mapping but not

convergence.

In economics, testing causality among variables is one of the most important issues. We

tested relationship between government expenditure and economic growth in Mexico from 1980

to 2015.
1http://pkg.julialang.org/detail/CauseMap.html
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2.3 Causal relationship between government expenditure

and economic growth

The relationship between government expenditure and economic growth has been studied by

economists and econometricians in very different frameworks. A large number of empirical

studies have tried to explain the relation between both variables. In this context, two schools

of thought expose the causality of this relationship. On the one hand, Wagner’s Law state

that a increase in economic growth has consequences (positives or negatives) in government

expenditure. On the other hand, Keynesian view conclude that causality takes place from

government expenditure to economic growth.

Overall, these studies highlight the need to research models to test Wagner’s Law and

Keynesian view, in fact these models can be defined by the following relationships:

lnGPOPt = α0 + α1lnY POPt + εt, (2.15)

lnY POPt = α0 + α1lnGPOPt + εt, (2.16)

The specification in Equation 2.15 captures the Wagner’s Law and Equation 2.16 captures

the Keynesians view. Where ln is the natural logarithm, GPOPt is real total government

expenditure, Y POPt is the real Gross Domestic Product (GDP) and εt is the error term at

period t.

Many publications have appeared in recent years documenting the dynamic interation
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between government expenditure and economic growth. For example, Landau (1983) used

cross-country analysis to examine the relatioship between the share of government expenditure

in Gross Domestic Product (GDP). The sample available includes over 100 countries including

Mexico and show the negative influence of government expenditure on economic growth. In

addition, the focus of recent research has been on studies that use time-series data. A key

limitation of this research is that a large number of time series are non-stationary. In general,

regression models for non-stationary variables give spurious results. To solve this problem,

many researchers have applied methods, such as the Granger causality test (Granger, 1969)

and cointegrated processes to estimate the long-run effects of economic growth for developed

countries. For example Kolluri et al. (2000) and Ghali (1999) used those techniques to evaluate

the dynamic between government spending and economic growth for G7 countries and OECD

countries, respectively.

The previous studies take into account the direction of causality in developed countries,

but little attention has been paid to developing countries. An interesting approach to this issue

has been proposed by Samudram et al. (2009), who tested the causal relationship between total

expenditure including expenditure of defense, education, development, and agriculture and

GDP for Malaysia. They found that with a structural break in 1998, the long-run causality

is bi-directional, supporting both Keynesian view and Wagner’s Law. In contrast to previous

studies with time series, Samudram et al. (2009) added the Auto-Regression Distributed Lag

(ARDL) model and the bound test (Pesaran et al., 2001).

In the same spirit, Ono (2014) used the auto-regressive distributed lag test for threshold

cointegration, which is developed by Li and Lee (2010). The empirical results indicate that
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Wagner’s view only holds for annual data of Japan. It is important to note that these previous

studies used existing tests to evaluate non-stationary series: Dickey and Fuller (1979), Phillips

and Perron (1988), Kwiatkowski et al. (1992) and Kapetanios (2005), cointegration test and

error correction: Engle and Granger (1987) and Johansen (1988) and causality: Granger (1969).

Several of these tests are included in the category of linear models, besides Granger causality

test requires that information about a causative factor is independently unique to that variable.
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Convergent Cross Mapping

Recently there have been an exponential growth in use of social media sites as platforms to

build social networks or social relations. This gives a great opportunity to researchers to analyse

large-scale data and forecast social trends. As people are influenced by the decision of friends

in a social network, the knowledge of who influenced whom has implications in the way how

control or promote the spread information or predict social behaviour. If the structure of social

network is known, we are able to predict social behaviour, but the causal structure in this system

is usually unknown or it is defined as a complex non-linear system. With characteristics above

of social network, causal inference in social media could lead a bias estimation of causality.

Then CCM will perform causal inference in social media as Luo et al. (2014) developed in their

manuscript.

Sugihara et al. (2012) develop a novel method, based on non-linear state space reconstruction

of time-serie data. This method called Convergent Cross Mapping (CCM) is an alternative

to other methods that detect causality between two time-series, basically Granger Causality

test. Since Granger causality test is designed to stochastic data, CCM is formulated to measure
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correlation in weakly coupled variables belong to deterministic dynamic system. The synthesis

of CCM was done according to the procedure of Takens’ theorem (Takens, 1981), which

ensures that the dynamics of a system can be reconstructed in a model fashion, by using

time-delayed embedding to reconstruct its tractor landscape.1 For example, suppose a two

dimensional system (x− y) can be described by its attractor, that is, the trajectory consisting of

consecutive equal spaced points. Then, we can use Takens’ theorem to reconstruct the attractor

from one variable (x) only using time-delayed embedding of the points in the other time-series

(y). Sugihara referred to the reconstructed attractor as shadow manifold. Thus CCM method

is based on the theory of non-linear state space reconstruction (SSR), where SSR techniques

have been explored by Deyle and Sugihara (2011). This SSR generalizes Takens’ results by

improving the reconstruction, when adding multiple dynamical coupled time-series.

For two variables X and Y that are dynamically coupled, a general property of

lagged-coordinate embedding is that point x(t) on Mx map 1:1 to points m(t) on M and

local neighbourhoods on Mx map to local neighbourhoods in M , where E is the dimension

of a state space, M is the common manifold and the time lag τ is positive. In this way,

CCM is an effective way to determine how local neighbourhoods on Mx correspond to local

neighbourhoods on My. In order to do so, a manifold Mx is constructed by lagged time-series

from variable X and used to estimate contemporaneous values of Y . Suppose an attractor

1 In other words,

Theorem 3.0.1. Let M be a compact, invariant, smooth manifold of dimension m. For pairs (ϕ, h), where ϕ :
M → M is a smooth observation function (at least C2) and h : M → R a smooth map, the following delay
reconstruction map defined by Φ[ϕ, h] : M → R2m+1

x 7−→ (h(x), h(ϕ(x)), . . . , h()ϕ2m(x)),

is an immersion.
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manifold M defined by three different variables, its reconstructed attractor or shadow manifolds

are defined by x(t), y(t) and z(t) as show Figure 3.1b

(a) Attractor Manifold M (b) Shadow Manifolds Mx and My

Figure 3.1: (a) Attractor manifold M based on a canonical Lorenz system. A point m(t) on M is defined by X(t),
Y (t) and Z(t). (b). Shadow manifolds Mx and My . Each point on the shadow manifold Mx is defined by x(t) and
y(t) on shadow manifold My . Supplementary Materials Sugihara et al. (2012) 2

3.1 Algorithm of Convergent Cross Mapping

Consider two time series of length L, {x} = {x1, x2, . . . , xL}, {y} = {y1, y2, . . . , yL}, and

embedding dimension E and a positive time lag τ . Then, x and y can be used to construct

shadow manifolds Mx and My that are an approximation to the real attractor. The last result

was noticed by Takens (1981), considering that shadow manifolds are part of a same dynamical

system as a dimension in the state space.

Then, the CCM algorithm may be written in terms of following steps:

2Source: http://science.sciencemag.org/content/suppl/2012/09/19/science.1227079.DC1
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1. The shadow manifold Mx is reconstructed from {x}. So, we begin by constructing the

lagged-coordinate vectors x(t) = 〈xt, xt−τ , xt−2τ , . . . , xt−(E−1)τ 〉 for t = 1 + (E − 1)τ

to t = L. Those lagged-coordinate vectors are the base for construction of the shadow

manifold Mx.

2. To create a cross-mapped estimate of yt, denoted by ŷt | Mx. We begin by finding

the contemporaneous lagged-coordinate vector on Mx, x(t) and locate its E + 1 nearest

neighbours. For each x(t), the nearest neighbour search results in a set of distances that

are sorted from closest to farthest by an associated set of time {t1, . . . , tE+1}. Where, the

distance d[x(t), x(s)] is measured by the Euclidean distance between two vectors.

3. The point in this step is to calculate with a weighted mean the nearest neighbours in My.

Then, each of the E+1 nearest neighbours are be used to calculate an associated weight.

The weight is determined by

wi =
ui∑E+1
j=1 uj

,

where

ui = exp{−d[x(t), x(ti)]/d[x(t), x(t1)]},

4. The set of time {t1, . . . , tE+1} are used to detect neighbours in y. Thus, it is possible to

estimate yt) from a locally weighted mean of the E + 1 yti values

ŷt |Mx =
E+1∑
i=1

wiyti ,

Steps 2 to 4 explain how Convergent Cross Mapping reconstructs shadow manifold Mx.

Once constructed this manifold, it is necessary to take points that are nearby in Mx and
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calculate a weighted mean. The latter mean will ensure a correspondence on My and

points that are nearby.

5. The CCM correlation is the Pearson correlation coefficient between the original

time-series and estimated time-series ŷt |Mx:

ρCCMY X
= ρ(yt, ŷt |Mx),

then we said “ yt CCM cause xt ” if correlation ρCCMY X
is not zero. Then, we test the

null hypothesis of no correlation against the alternative that there is a non-zero correlation,

H0 : ρCCMY X
= 0

Ha : ρCCMY X
6= 0,

We calculate a t-statistic for correlation coefficient as,

t =
ρCCMY X

sρ
where sρ =

√
1− ρ2CCMY X

N − 2
,

whereN is the length of the time-series processes. We compute tcritical value for Pearson’s

correlation using a Student’s t distribution with N − 2 degrees of freedom and a level of

significance α, regularly α = 5%. We said ρCCMY X
is not zero, if | t |< tcritical, i.e., “ Y

CCM cause X ”.

All steps above could be useless if we estimate one point alone because this point is not

sufficient to show how well ŷt |Mx estimates the true value yt
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(a) Shadow Manifolds Mx (b) Convergent Cross Mapping

Figure 3.2: (a) Shadow manifold Mx constructed using lagged-coordinate embedding of X with lag = τ . (b).
Convergent Cross Mapping tests for correspondence between shadow manifoldsMx andMy . Points that are nearby
in Mx will correspond to points that are nearby on My . Supplementary Materials Sugihara et al. (2012) 3

Cross mapping from yt to xt is determined analogously. If xt is affected by yt, the nearest

neighbours of Mx should identify the time indices of corresponding nearest neighbours on My.

Then, it is necessary obtain a library consisting of L points from Mx is therefore used to provide

estimates of L points in the time series for yt.

3Source: http://science.sciencemag.org/content/suppl/2012/09/19/science.1227079.DC1
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Simple Examples

4.1 Simulations

The usefulness of the CCM method in identifying causative variables into sets of time-series

data can be proved by using example systems. Then, the following model examples compare

with different sample sizes ( T = 50, 200 and 400) the effectiveness of Granger causality tests

and CCM to detect causality. The Granger causality tests used in those examples are Granger

causality test with vector autoregression model (GC test) and Toda-Yamamoto test (TY test).

The latter test was formulated by Toda and Yamamoto (1995) and it can measure Granger

causality when time-series variables can be non-cointegrated or cointegrated of an arbitrary

order.

The CCM algorithms are implemented in MATLAB, where CCM (Central Matlab) is a file

created by Jozef Jakubik and it is available in http://www.mathworks.com/matlabcentral/
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fileexchange/52964-convergent-cross-mapping and CCM (own creation) is an function

based on CCM algorithm described in Chapter 3 and is shown in Appendix A. The CCM

algorithm depends on the dimension E and the lag time step τ . In the examples we use

E = 3 and τ = 1. We simulate each systems and test the causal relation between every single

processes in the system. Repeating for 1000 times the simulation, we obtain the proportion of

simulations when a time-series process causes another variable. On one hand, null hypothesis

in Granger causality tests were rejected with a significance level α = 5%. On the other hand,

null hypothesis about ρCCM was rejected with a significance level α = 5%.

Before proceeding to examine causality results, it will be necessary to mention the results

obtained by Sugihara et al. (2012). Suppose, a non-linear system for two coupled difference

equations that exhibit chaotic behaviour:

xt+1 = xt{rx − rxxt − βx,yyt},

yt+1 = yt{ry − ryyt − βy,xxt}. (4.1)

In Figure 3 of their original text, Sugihara et al. (2012) summarize their results to Equation

4.1 for different values of the coupling constants βx,y and βy,x with specific values of xt and

yt. This figure first shows how CCM converges where the effect of xt on yt is stronger than

in the reverse i.e, βy,x > βx,y, consequently, cross mapping xt using My converges faster than

cross mapping yt using Mx. Secondly, the figure shows that cross mapping of yt using Mx fails

when βx,y = 0 and it success in cross mapping xt using My. Finally, Sugihara et al. (2012)

demonstrated non-convergence of cross mapping yt using Mx as a function of forcing strength

when βx,y = 0, as a result convergence only occurs as a special case if strong forcing causes the

system to collapse dimensionality.
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To investigate this further, we will look at what happens with causality for a particular choice

of rx and ry when the coupling between the two variables is manipulated.

4.1.1 Non-linear independent processes

The first experimental result of Equation 4.1 will be when βx,y = βy,x = 0, and rx and ry have

different values around but rx+ry = 6.5. Then, consider the non-linear example of independent

processes

xt+1 = xt(rx − rxxt),

yt+1 = yt(rx − rxyt), (4.2)

with rx + ry = 6.5 and starting points x1 and y1 ∈ [0, 1]. 1

Tables 4.1 and 4.2 present the results obtained from simulations for a system where both

variables are independent and non-linear with behaviour as a logistic function. On one hand,

what is interesting in this system is that CCM methods calculate different percentages of

cases where null hypothesis is rejected. This problem may be caused by some ambiguity as

Sugihara et al. (2012) illustrated in Figure 3. Nevertheless, causality from xt to yt is present in

approximately 20% of cases when is used Toda-Yamamoto test. Also CCM (Matlab Central)

obtains low percentages of causality.

1Matlab code file ( .m ) is available in Appendix B
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Table 4.1: Does xt cause yt?

Sample

size
GC test TY Test

CCM

(Matlab Central)

CCM

(own creation)

50 0.39 0.22 0.50 0.82

200 0.53 0.19 0.29 0.82

400 0.54 0.15 0.19 0.82
Granger Causality and CCM causality are being tested. The null hypothesis for Granger cause test and
Toda-Yamamoto test is rejected with a level of significance α = 5%. The null hypothesis of no correlation in
CCM method is rejected with a level of significance α = 5%. The results obtained from a iteration of 1000
repetitions reflect the percent of iterations when variableX causes Y process. Considering a system with non-linear
independent variables (4.2), the most striking result to emerge from the system is that Toda-Yamamoto test rejects
null hypothesis in few cases compared with CCM algorithms.

On the other hand, Table 4.2 shows results similar to Table 4.1 CCM algorithms do not

reject null hypothesis at least 50% of iterations. Meanwhile, Toda-Yamamoto test rejects null

hypothesis in few cases.

Table 4.2: Does yt cause xt?

Sample

size
GC test TY Test

CCM

(Matlab Central)

CCM

(own creation)

50 0.40 0.16 0.66 0.80

200 0.35 0.09 0.53 0.79

400 0.38 0.07 0.47 0.76
Granger Causality and CCM causality are being tested. The null hypothesis for Granger cause test and
Toda-Yamamoto test is rejected with a level of significance α = 5%. The null hypothesis of no correlation in
CCM method is rejected with a level of significance α = 5%. The results obtained from a iteration of 1000
repetitions reflect the percent of iterations when variable Y causes X process. Considering a system with nonlinear
independent variables (4.2), the most striking result to emerge from the system is that Toda-Yamamoto test rejects
null hypothesis in few cases compared with CCM algorithms.
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Sugihara et al. (2012) demonstrated that cross mapping may fail when βx,y is zero and

βx,y = 0 to estimate causality. In Figure 3 from original manuscript, ρCCMY X
− ρCCMXY

has

a value between zero and 0.2, if difference is 0.2 then CCM calculated a causality between

variables.

4.1.2 Non-linear causal processes

Sugihara et al. (2012) demonstrated the phenomenon of mirage correlation with three different

samples from a non-linear logistic difference system as Equation 4.1 with constant coefficients:

rx = 3.8, ry = 3.5, βx,y = 0.02, βy,x = 0.01 and staring conditions x1 = 0.4 and y1 = 0.2. They

illustrate this mirage correlations in Figure 1 of original manuscript and showed that there is no

long-term correlations with a length of 1000 in each time-series. In this exercise we want to

know if causality changes with this specification of parameters and different starting conditions.

Then, consider the non-linear example of a causal processes

xt+1 = xt[3.8− 3.8xt − 0.02yt],

yt+1 = yt[3.5− 3.5yt − 0.1xt], (4.3)

with x1 and y1 ∼ [0, 0.4]. This example system is used by Sugihara et al. (2012) to analyse

Granger causality tests and how separability affects to tests results. 2

The results obtained from Equation 4.3 are displayed in Tables 4.3 and 4.4. On the one

hand, Granger causality tests identify causality from xt to yt almost 90% of iterations, except

2Matlab code file ( .m ) is available in Appendix B
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Toda-Yamamoto test for time-series with a length L = 50 where less than 50% of iterations

reject null hypothesis. Meanwhile, CCM reject null hypothesis about ρCCM = 0 almost 70% of

samples when time length is L = 50, in this case convergence is reflected when the length of a

time-series increases.

Table 4.3: Does xt cause yt?

Sample

size
GC test TY Test

CCM

(Matlab Central)

CCM

(own creation)

50 0.99 0.47 0.72 0.93

200 1.00 0.97 1.00 1.00

400 1.00 1.00 1.00 1.00
Granger Causality and CCM causality are being tested. The null hypothesis for Granger cause test and
Toda-Yamamoto test is rejected with a level of significance α = 5%. The null hypothesis of no correlation in CCM
method is rejected with a level of significance α = 5%. The results obtained from a iteration of 1000 repetitions
reflect the percent of iterations when variable xt causes yt process. Considering a system with non-linear causal
variables (4.3), the most striking results to emerge from the system is that Granger causality with Toda-Yamamoto
test is present when using small samples in less than 50% of the cases and CCM demonstrates CCM causality from
xt to yt in a higher percentage of samples tested.

On the other hand, Granger causality test does not reject its null hypothesis of yt causes xt

at least 50% of sample tested, meanwhile Toda-Yamamoto test infers that this causality only 5%

of iterations. However, CCM detects causality in an increasing percentage as L grows. While

sample length is larger the CCM identifies causality almost every sample.
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Table 4.4: Does yt cause xt?

Sample

size
GC test TY Test

CCM

(Matlab Central)

CCM

(own creation)

50 0.50 0.05 0.57 0.53

200 0.30 0.04 0.69 0.90

400 0.42 0.05 0.97 1.00
Granger Causality and CCM causality are being tested. The null hypothesis for Granger cause test and
Toda-Yamamoto test is rejected with a level of significance α = 5%. The null hypothesis of no correlation in CCM
method is rejected with a level of significance α = 5%. The results obtained from a iteration of 1000 repetitions
reflect the percent of iterations when variable Y causes X process. Considering a system with non-linear causal
variables (4.3), the most striking result to emerge from the system is that Granger causality is present when using
large samples in less than 50% of the cases. The latter result does not agree with intuition about the system created.
In this system, separability is not allow then Granger causality calculations are no longer valid. Meanwhile, CCM
identifies causality almost every sample.

Sugihara et al. (2012) illustrated this example with samples of 300 points, their results are

that Granger causality using F-test appears to identify causality from xt to yt but it does not

detect causality from yt to xt. This may due to the parametrization of the system 4.3, which use

a ry = 3.5 that is not in the range of chaotic dynamic. In comparison with growth rate rx = 3.8

where the chaos is present. In this case, a chaotic system has a strange attractor, around which

the system oscillates forever, never repeating itself or settling into a steady state of behaviour.

4.1.3 Non-linear causal system

Sugihara et al. (2012) showed that CCM can distinguish true interaction from a simple

correlation resulted by shared driving variables. In Figure 4 in original manuscript, they

illustrated the method with a complex model with five variables (for example, Equation 4.4).

They proposed their model such that variables 1, 2, and 3 represent a mutually interacting guild
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that externally force variables 4 and 5, whereas 4 and 5 do not influence any other variables.

Thus, their results for the complex system indicate that variables 1, 2 and 3 all interact mutually

but interact only asymmetrically as external forcing variables with respect to variables 4 and 5,

which do not interact directly themselves. We consider the next non-linear example of a causal

system with five variables with the same parameters as Sugihara et al. (2012) i.e,

x1,t+1 = x1,t[4− 4x1,t − 2x2,t − 0.4x3,t],

x2,t+1 = x2,t[3.1− 0.31x1,t − 3.1x2,t − 0.93x3,t],

x3,t+1 = x3,t[2.12 + 0.636x1,t + 0.636x2,t − 2.12x3,t],

x4,t+1 = x4,t[3.8− 0.111x1,t − 0.011x2,t + 0.131x3,t − 3.8x4,t],

x5,t+1 = x5,t[4.1− 0.082x1,t − 0.111x2,t − 0.125x3,t − 4.1x5,t], (4.4)

with starting points xi(1) ∼ [0, 0.4] with i ∈ {1, 2, 3, 4, 5}. 3

Firstly, we obtain causal relation between variable x1 and other variables. Granger causality

tests and CCM method reflect causality from variable 1 to variables 2 and 3 in higher percentage

of samples, even length of those samples is short. However, Granger causality is present

in low percentage of samples when variable 1 influences variables 4 and 5, for example

Toda-Yamamoto test only rejects null hypothesis 10% of iterations when sample size is 400

points and causality is from time-series 1 to 5. Meanwhile CCM causality rejects hypothesis

(ρ = 0) at least 77% of iterations. This result is consistent with intuition and Sugihara et al.

(2012) causal links.
3Matlab code file ( .m ) is available in Appendix C
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Table 4.5: Does x1 cause xj?

Sample

size
GC test TY Test

CCM

(Matlab Central)

CCM

(own creation)

x2 x3 x4 x5 x2 x3 x4 x5 x2 x3 x4 x5 x2 x3 x4 x5

50 1.00 1.00 0.54 0.56 0.74 0.73 0.11 0.13 1.00 1.00 0.43 0.41 0.95 0.87 0.25 0.25

200 1.00 1.00 0.33 0.27 0.74 0.76 0.13 0.10 1.00 1.00 0.50 0.49 0.99 0.99 0.39 0.53

400 1.00 1.00 0.33 0.26 0.76 0.75 0.16 0.10 1.00 1.00 0.76 0.77 1.00 1.00 0.77 0.93

Granger Causality and CCM causality are being tested. The null hypothesis for Granger cause test and
Toda-Yamamoto test is rejected with a level of significance α = 5%. The null hypothesis of no correlation in CCM
method is rejected with a level of significance α = 5%. The results obtained from a iteration of 1000 repetitions
reflect the percent of iterations when variable x1 causes xj processes. Considering a system with non-linear causal
variables (4.4), the most striking result to emerge from the system is that Granger causality (x1 ⇒ x5) is present
when using large samples in less than 30% of the cases. The latter result does not agree with intuition about the
system created but CCM method measures better correlations. In this system, separability is not allow, then Granger
causality calculations are no longer valid.

Secondly, we calculate causal relation between variable x1 and other variables.The results in

Table 4.6 reflect the relation from variable 2 to variables 1 and 3. But, as results in Table 4.5,

relations from time-series 2 to time-series 4 and 5 are measured poorly by Granger causality

tests but CCM algorithms are better measured this relationship. This result is consistent with

intuition and Sugihara et al. (2012) causal links.
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Table 4.6: Does x2 cause xj?

Sample

size
GC test TY Test

CCM

(Matlab Central)

CCM

(own creation)

x1 x3 x4 x5 x1 x3 x4 x5 x1 x3 x4 x5 x1 x3 x4 x5

50 1.00 1.00 0.53 0.55 0.66 0.66 0.13 0.12 1.00 1.00 0.43 0.38 0.91 0.97 0.24 0.18

200 1.00 1.00 0.30 0.27 0.73 0.72 0.09 0.10 1.00 1.00 0.85 0.44 1.00 1.00 0.84 0.35

400 1.00 1.00 0.40 0.23 0.74 0.76 0.10 0.09 1.00 1.00 1.00 0.61 1.00 1.0 1.00 0.77

Granger Causality and CCM causality are being tested. The null hypothesis for Granger cause test and
Toda-Yamamoto test is rejected with a level of significance α = 5%. The null hypothesis of no correlation in CCM
method is rejected with a level of significance α = 5%. The results obtained from a iteration of 1000 repetitions
reflect the percent of iterations when variable x2 causes xj processes. Considering a system with nonlinear causal
variables (4.4), the most striking result to emerge from the system is that Granger causality (x2 ⇒ x5) is present
when using large samples in less than 30% of the cases but CCM measures this relation in higher rates. The latter
result does not agree with intuition about the system created. In this system, separability is not allow, then Granger
causality calculations are no longer valid.

The results in Table 4.7 also reflect a strong causal relation from variable 3 to variables 1

and 2. Meanwhile, the causal relation from variable 3 to variables 4 and 5 has different rates

depended on method. This results are similar to variables x1 and x2. It is important to note that

Granger causality tests only reflect the interaction between variables x1, x2 and x3 and detect

causality between those variables and variables x4 and x5 in low percentage of samples.
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Table 4.7: Does x3 cause xj?

Sample

size
GC test TY Test

CCM

(Matlab Central)

CCM

(own creation)

x1 x2 x4 x5 x1 x2 x4 x5 x1 x2 x4 x5 x1 x2 x4 x5

50 1.00 1.00 0.52 0.56 0.67 0.80 0.13 0.11 1.00 1.00 0.41 0.42 0.97 0.97 0.26 0.28

200 1.00 1.00 0.28 0.24 0.77 0.78 0.09 0.09 1.00 1.00 0.67 0.44 1.00 1.00 0.77 0.32

400 1.00 1.00 0.34 0.24 0.76 0.78 0.07 0.13 1.00 1.00 0.99 0.50 1.00 1.00 1.00 0.44

Granger Causality and CCM causality are being tested. The null hypothesis for Granger cause test and
Toda-Yamamoto test is rejected with a level of significance α = 5%. The null hypothesis of no correlation in CCM
method is rejected with a level of significance α = 5%. The results obtained from a iteration of 1000 repetitions
reflect the percent of iterations when variable x3 causes xj processes. Considering a system with nonlinear causal
variables, the most striking result to emerge from the system is that Granger causality (x3 ⇒ x5) is present when
using large samples in less than 30% of the cases. The latter result does not agree with intuition about the system
created. In this system, separability is not allow, then Granger causality calculations are no longer valid.

Sugihara and co-workers demonstrated that Granger causality test misidentifies the

causal network. In table 4.8 this misidentification is present in Granger causality test but

Toda-Yamamoto test measures the causality better than CCM algorithms. In those latter

results, Toda-Yamamoto rejects null hypothesis about causality between variable x4 and other

variables in the lowest rates. Meanwhile, CCM methods reject null hypothesis about correlation

contribution in approximately 30% of samples.
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Table 4.8: Does x4 cause xj?

Sample

size
GC test TY Test

CCM

(Matlab Central)

CCM

(own creation)

x1 x2 x3 x5 x1 x2 x3 x5 x1 x2 x3 x5 x1 x2 x3 x5

50 1.00 1.00 1.00 0.50 0.11 0.12 0.11 0.06 0.29 0.31 0.32 0.26 0.31 0.28 0.31 0.23

200 1.00 1.00 1.00 0.20 0.09 0.07 0.09 0.05 0.36 0.35 0.36 0.26 0.32 0.32 0.33 0.24

400 1.00 1.00 1.00 0.17 0.08 0.09 0.08 0.05 0.35 0.37 0.38 0.24 0.31 0.32 0.32 0.23

Granger Causality and CCM causality are being tested. The null hypothesis for Granger cause test and
Toda-Yamamoto test is rejected with a level of significance α = 5%. The null hypothesis of no correlation in CCM
method is rejected with a level of significance α = 5%. The results obtained from a iteration of 1000 repetitions
reflect the percent of iterations when variable x4 causes xj processes. Considering a system with nonlinear causal
variables, the most striking result to emerge from the system is that Granger causality with Granger causality test
(x4 ⇒ xjwhen i ∈ {1, 2, 3}) is present in each sample. The latter result does not agree with intuition about the
system created. In this system, separability is not allow, then Granger causality calculations are no longer valid. In
this system x4 causes only x5 and CCM method identifies this causality in more than 20 % of cases compared to
Toda-Yamamoto test, where causality is reflected in 5% of iterations.

As Table 4.9 Toda-Yamamoto test rejects null hypothesis in lowest percentages. Relation

between variable x5 and other variables is calculated better with CCM methods and

Toda-Yamamoto test.
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Table 4.9: Does x5 cause xj?

Sample

size
GC test TY Test

CCM

(Matlab Central)

CCM

(own creation)

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

50 1.00 1.00 1.00 0.51 0.11 0.10 0.11 0.09 0.27 0.26 0.26 0.24 0.24 0.24 0.23 0.22

200 1.00 1.00 1.00 0.23 0.09 0.09 0.09 0.05 0.26 0.26 0.24 0.20 0.23 0.23 0.22 0.21

400 1.00 1.00 1.00 0.25 0.10 0.08 0.08 0.05 0.27 0.28 0.26 0.19 0.25 0.21 0.23 0.18

Granger Causality and CCM causality are being tested. The null hypothesis for Granger cause test and
Toda-Yamamoto test is rejected with a level of significance α = 5%. The null hypothesis of no correlation in CCM
method is rejected with a level of significance α = 5%. The results obtained from a iteration of 1000 repetitions
reflect the percent of iterations when variable x5 causes xj processes. Considering a system with nonlinear causal
variables, the most striking result to emerge from the system is that Granger causality with Granger causality test
(x5 ⇒ xjwhen i ∈ {1, 2, 3}) is present in each sample. The latter result does not agree with intuition about the
system created. In this system, separability is not allow, then Granger causality calculations are no longer valid. In
this system x5 causes only x4 and CCM method identifies this causality in approximately 20 % of cases compared
to Toda-Yamamoto test, where causality is reflected in 5% of iterations.

Sugihara et al. (2012) constructed this complex system to prove CCM causality between the

subsystem x1, x2 and x3 and variables x4 and x5. Then, this subsystem is the forcing subsystem,

that interacts unidirectionally with variables x4 and x5. But processes x4 and x5 do not interact

with each other and do not influence x1, x2 and x3

4.1.4 Linear causal processes

This section of results shows a linear system. First, we expect to know how CCM method

identifies causality in a linear system. Second, we will study what effect noise on CCM results.

Consider the linear example of causal processes

yt = 1.0 + 1.5yt−1 − 0.5625yt−2 + 0.215xt−1 + εyt,

xt = 1.0 + 0.8xt−1 + εxt, (4.5)
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with εxt and εyt ∼ N(0, 1). 4

From the equations which describe the process, we know that the expected conclusion is

“xt causes yt”. The table below illustrates this idea, because for each sample the conclusion

is that “xt Granger causes yt” and “xt CCM causes yt” with high probability. Table 4.10

illustrate this intuitive idea, Granger causality tests and CCM algorithms detect causality in high

percentages of samples. This rate increases as sample size grows given the idea of convergence

in cross-mapping.

Table 4.10: Does xt cause yt?

Sample

size
GC test TY Test

CCM

(Matlab Central)

CCM

(own creation)

50 0.81 0.87 0.62 0.70

200 1.00 0.85 0.78 0.83

400 1.00 0.99 0.88 0.93
Granger Causality and CCM causality are being tested. The null hypothesis for Granger cause test and
Toda-Yamamoto test is rejected with a level of significance α = 5%. The null hypothesis of no correlation in
CCM method is rejected with a level of significance α = 5%. The results obtained from a iteration of 1000
repetitions reflect the percent of iterations when variable X causes Y process. Considering a system with linear
causal variables (4.5), the most striking result to emerge from the system is that CCM causality is present when
using small samples in less than 70% of the cases.

But CCM results in 4.11 does not reliably reflect the intuitive conclusion in this linear

example system. In samples larger than 200 observations ρCCMY X
is not zero in more than

70 per cent of simulations. Meanwhile, Toda-Yamamoto test rejects null hypothesis at least 5%

of samples.

4Matlab code file ( .m ) is available in Appendix D
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Table 4.11: Does yt cause xt?

Sample

size
GC test TY Test

CCM

(Matlab Central)

CCM

(own creation)

50 0.51 0.81 0.59 0.53

200 0.20 0.07 0.74 0.83

400 0.21 0.05 0.87 0.96
Granger Causality and CCM causality are being tested. The null hypothesis for Granger cause test and
Toda-Yamamoto test is rejected with a level of significance α = 5%. The null hypothesis of no correlation in
CCM method is rejected with a level of significance α = 5%. The results obtained from a iteration of 1000
repetitions reflect the percent of iterations when variable Y causes X process. Considering a system with linear
causal variables (4.5), the most striking result to emerge from the system is that CCM causality is present when
using large samples in more than 80% of the cases. The latter result does not agree with intuition about the system
created.

A similar example was reported by McCracken and Weigel (2014) where CCM correlations

may not be reliable measure of “driving” for the following dynamical system,

xt = sin(t),

yt = Axt−1 +Bηt,

where A,B ∈ R and ηt ∼ N(0, 1) and length of 2000 observations. Where CCM results

depends on A and B parameters. Another conclusion about this kind of example is that the

wrong causal effects may be due to a limitation of the algorithm with respect to noise. Mønster

et al. (2016) also demonstrated that when the noise level increases the cross-mapped estimation

deteriorates. The latter result may be the reason why CCM algorithms do not detect causality

from yt to xt, as well as, Granger causality tests do.
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4.1.5 Structural breaks in time-series

Testing causality when a time-series has structural breaks is of considerable importance

in the analysis of time-series. In the section that follows, it will be calculated causality

between variables with structural breaks. Firstly, time-series with independent structural

breaks, secondly, causal processes with breaks and finally, another causal system with different

structural breaks.

Independent processes with independent structural breaks

Consider the following linear example of independent processes with independent structural

breaks

xt =

 µx1 + φx1xt−1 + uxt if t ≤ t0;

µx2 + φx2xt−1 + uxt if t > t0,

yt =

 µy1 + φy1yt−1 + uyt if t ≤ t1;

µy2 + φy2yt−1 + uyt if t > t1,
(4.6)

with uyt and uxt ∼ N(0, 1), µx1, µx2, µy1 and µy2 are constant, and φx1, φx2, φy1 and φy2

∼ U(0, 1) 5.

Table 4.12 illustrates causality from xt to xt. In this example, CCM algorithms detect a

causal relation between those variables at least 50% of samples. However, Toda-Yamamoto test

rejects its null hypothesis 10% of iterations when sample size is 200 points. The latter result is

better than Granger test which detect causality in approximately 30% of samples.

5Matlab code file ( .m ) is available in Appendix E
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Table 4.12: Does xt cause yt?

Sample

size
GC test TY Test

CCM

(Matlab Central)

CCM

(own creation)

50 0.54 0.77 0.52 0.49

200 0.31 0.10 0.52 0.52

400 0.34 0.08 0.53 0.55
Granger Causality and CCM causality are being tested. The null hypothesis for Granger cause test and
Toda-Yamamoto test is rejected with a level of significance α = 5%. The null hypothesis of no correlation in CCM
method is rejected with a level of significance α = 5%. The results obtained from a iteration of 1000 repetitions
reflect the percent of iterations when variable x causes y process. Considering a system with linear independent
variables with structural breaks (4.6), the most striking result to emerge from the system is that Granger causality
with Toda-Yamamoto test is present in few cases. However, CCM algorithms detect causality at least 50% of cases.

As results above, causality in this system is better measured by Toda-Yamamoto test with

sample sizes larger than 50 points.

Table 4.13: Does yt cause xt?

Sample

size
GC test TY Test

CCM

(Matlab Central)

CCM

(own creation)

50 0.55 0.77 0.50 0.54

200 0.31 0.10 0.49 0.53

400 0.32 0.07 0.52 0.48
Granger Causality and CCM causality are being tested. The null hypothesis for Granger cause test and
Toda-Yamamoto test is rejected with a level of significance α = 5%. The null hypothesis of no correlation in CCM
method is rejected with a level of significance α = 5%. The results obtained from a iteration of 1000 repetitions
reflect the percent of iterations when variable y causes x process. Considering a system with linear independent
variables (4.6), the most striking result to emerge from the system is that Granger causality with Toda-Yamamoto
test is present in few cases. However, CCM algorithms detect causality at least 50% of cases.

The failure of CCM analysis to give expected conclusions about causal interaction with an
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independent variables may be due to a limitation of the algorithm with respect to noise.

Causal processes with breaks

Consider the following linear example of independent processes with independent structural

breaks

xt =

 µx1 + φx1xt−1 + uxt if t ≤ t0;

µx2 + φx2xt−1 + uxt if t > t0,

yt = µy + φyxt−1 + uyt, (4.7)

with uyt and uxt ∼ N(0, 1), µx1, µx2 and µy are constant, and φx1, φx2, φy ∼ U(0, 1). 6

The expected conclusion with System 4.7 is that xt drives xt. Calculations in Table 4.14

demonstrate a causal relation from xt to yt when Granger causality tests are calculated, for

example, Toda-Yamamoto test concludes that xt causes yt in more than 90% of samples with

length L = 50. Nevertheless, CCM algorithms find a causal relation in about 50% of cases.

6Matlab code file ( .m ) is available in Appendix E
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Table 4.14: Does xt cause yt?

Sample

size
GC test TY Test

CCM

(Matlab Central)

CCM

(own creation)

50 0.87 0.91 0.45 0.50

200 0.89 0.77 0.53 0.59

400 0.89 0.75 0.57 0.59
Granger Causality and CCM causality are being tested. The null hypothesis for Granger cause test and
Toda-Yamamoto test is rejected with a level of significance α = 5%. The null hypothesis of no correlation in CCM
method is rejected with a level of significance α = 5%. The results obtained from a iteration of 1000 repetitions
reflect the percent of iterations when variable x causes y process. Considering a system with linear independent
variables (4.7), the most striking result to emerge from the system is that Granger causality with Toda-Yamamoto
test is present when using small samples in more than 90% of the cases. Nevertheless, CCM algorithms find a
causal relation in about 50% of cases.

Granger causality tests reject the null hypothesis in few cases, this result give the intuitive

conclusion that yt does not cause xt. But, CCM method rejects null hypothesis about correlation

between estimated time-series and real variables.

Table 4.15: Does yt cause xt?

Sample

size
GC test TY Test

CCM

(Matlab Central)

CCM

(own creation)

50 0.43 0.76 0.58 0.71

200 0.21 0.07 0.80 0.85

400 0.18 0.05 0.84 0.87
Granger Causality and CCM causality are being tested. The null hypothesis for Granger cause test and
Toda-Yamamoto test is rejected with a level of significance α = 5%. The null hypothesis of no correlation in
CCM method is rejected with a level of significance α = 5%. The results obtained from a iteration of 1000
repetitions reflect the percent of iterations when variable y causes x process. Considering a system with linear
independent variables (4.7), the most striking result to emerge from the system is that CCM causality is present
when using large samples in more than 80% of the cases.
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As example above, maybe a combinations of coupling strength and noise level give as result

that error calculations in CCM algorithms.
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Chapter 5

Practical application

In economics, causality could be viewed from the perspective of policy evaluation. Because

causal inferences and causal motivations in economics are motivated by policy questions. For

example, the analysis of the determinants of long-run economic growth has occupied a central

topic in empirical research in economics. A large and growing body of literature has investigated

the linkages between economic growth and a variety of economic policy. Much of the available

literature on this causal relations deal with the question of causal relation between government

expenditure and economic growth. The questions about causal relation between government

expenditure and economic growth will be discussed in this chapter. Firstly, we will analyse data

from Mexico for both variables. Secondly, we will apply linear methods to know time-series

behaviour and finally detect of causality between both variables.
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5.1 Data

Gross Domestic Product (GDP hereafter) is considered the most well-known aggregate measure

of total economic production for a country and it is an indicator of economic growth. GDP

measure the market value of all goods and services produced by an economy during an specific

period of time. Hence, GDP includes goods belong to personal consumption, government

purchases, private inventories, construction costs and exports. This indicator is normally

measured by a national government statistical agency, in Mexico is measured by Instituto

Nacional de Estadística, Geografía e Informática (INEGI hereafter).

GDP is measured each quarter, in some cases this indicator is displayed on an annualized

basis. Generally, GDP is calculated in real terms, meaning that the data is adjusted for price

changes. Data on GDP in Mexico cover the 1980-2015 time period. But, INEGI has divided

the calculation into two different periods, the first was constructed on an annualized basis in

1993, the second is calculated on a constant base in 2008. So that, we constructed with all

those information available in INEGI website, a long time-series with a total length of 143

observations.

From GDP data, the time-series process has a mean of 9,435,669.51 with a wide variance

(SD = 2,465,037.52). Similar to GDP process, government expenditure has a standard deviation

equal to 177,949.66. Table 5.1 shows the summary statistics for both time-series variables.
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Table 5.1: Descriptive statistics

Basic

statistics
GDP

Government

Expenditure

Mean 9,435,669.51 1,188,103.48

Median 9,422,001.02 117,910.54

Min. 5,961,524.57 755,222.64

Max. 14,303,118.64 1,571,854.91

S.D. 2,465,037.52 177,949.66
GDP and government expenditure data are obtained from Instituto Nacional de Estadística y Geografía (INEGI)
http: / / www .inegi .org .mx/ , time-series are from 1980 to 2015. Both variables have a trend component
and high variance.

The time-series processes present predictable seasonal patterns. As a consequence, this

dynamic makes it hard to interpret the trend in both variables. Applying X-12 ARIMA technique

to time-series, calculations give us evidence to reject hypothesis about presence of non seasonal

processes. Besides, to stabilize the variance of both time-series, we also transform time-series

as logarithms. So, we obtain seasonally adjusted processes and the new time-series are shown

in Figures 5.1a and 5.1b.
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Figure 5.1: (a) GDP was seasonally adjusted with ARIMA-X12 method in Gretl software. (b). Government
expenditure was seasonally adjusted with ARIMA-X12 method in Gretl software.
Source: Instituto Nacional de Estadística y Geografía (INEGI) http: / / www .inegi .org .mx/
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As demonstrated in the figures above, the seasonally adjusted time-series processes are

smoother and shows a trend in time. Trends show the strong growth in both variables. On the

one hand, GDP has been growing from the start of 1980 to 2015. On the other hand, government

expenditure has grown from 2005 to the present.

Figure 5.1a and 5.1b reveals that after seasonal adjustment, processes still exhibit a

nonstationary behaviour. In this case both figures show that the mean and variance are not

constant in time. To solve this problem, first, we transform both variables into logarithms, this

technique can help to stabilize the variance of a time-series process. And secondly, we compute

the first difference, this method help stabilize the mean of a time series by eliminating changes

in the level of a time-series.
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Figure 5.2: (a) First difference of GDP time-series obtained with Gretl software. (b). First difference of
government expenditure time-series obtained with Gretl software.
Source: Instituto Nacional de Estadística y Geografía (INEGI) http: / / www .inegi .org .mx/

5.2 Empirical findings

The results obtained from the preliminary transformation, give us apparently two stationary

time-series variables with a standard deviation smaller than data obtained in table 5.1. This
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procedure can help to stabilize the mean of time-series by removing changes in the level of a

time series, and so eliminating trend.

Table 5.2: Descriptive statistics

Basic

statistics
GDP

Government

Expenditure

Mean 0.0060 0.0046

Median 0.0076 0.0026

Min. -0.0541 -0.1219

Max. 0.0420 0.1957

S.D. 0.0156 0.0327
GDP and government expenditure data are obtained from Instituto Nacional de Estadística y Geografía (INEGI)
http: / / www .inegi .org .mx/ , time-series are from 1980 to 2015. First differences are applied for both
time-series.

As we showed in Section 2.1.2 unit root tests can be used to determine whether time-series

variables are non-stationary. The results obtained from a set of unit root tests tested on

logarithmic variables are presented in table 5.3.
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Table 5.3: Unit root tests

Variables Model ADF ADF-GLS KPSS Philip-Perron

lnGPD

Constant Level 0.2511 1.8260 1.2918∗∗∗ −0.2349

First difference −4.1674∗∗∗ −4.1285∗∗∗ 0.0519 −11.1977∗∗∗

Constant and

trend
Level −3.0577 −2.3374 0.1099 −2.8140

First difference −4.153∗∗∗ −4.2108∗∗∗ 0.0481 −11.1603∗∗∗

lnGE

Constant Level 0.2571 1.9415 1.2083∗∗∗ −1.9180

First difference −2.7474∗ −0.0667 0.1935 −24.3742∗∗∗

Constant and

trend
Level −1.5208 −1.5667 0.1591∗∗ −5.0276∗∗∗

First difference −2.7993 −1.5861 0.1635∗∗ −24.3288∗∗∗

∗, ∗∗ y ∗∗∗ are significant levels in 10%, 5% y 1% respectively to reject null hypothesis

Unit root test for GDP reject hypothesis of stationarity for time-series. It may derive that GDP has an order of
integration equal to 1. The order of integration for government expenditure is unknown, all unit root test do not
reject null hypothesis.
Source: Instituto Nacional de Estadística y Geografía (INEGI) http: / / www .inegi .org .mx/

All these tests use the existence of non stationarity as the null hypothesis, except KPSS

where null hypothesis is based on stationarity. It can be seen from the data in Table 5.3 that

does not exist enough information to say that both variables are nonstationary. For example,

augmented Dickey Fuller and ADF-GLS test test fails to reject the null hypothesis of a unit root

test in lnGDP . As a result, it is necessary apply other unit root test as Kapetanios test to know

if there is a structural break in data.

The nule hypothesis of Kapetanios (2005) is that a time-series process contain a unit root

(Theory is explained in section 2.1.3). Kapetanios unit root test has been applied for GDP
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and government expenditure both in the first difference. According to the results of Table 5.4,

economic growth time-series is stationary in the first difference. Although, in DT model a

breaking realized in the data set resulting in 1982.

However, for the government expenditure series the test static at level equal to 5% is

greater than the critical value then the basic hypothesis of the time-series that expresses the

process contains a unit root can be rejected. Then, time-series data for government expenditure

contain more than a break from 1980 to 2015. The break dates are 2004, 1994 and 1983 when

government expenditure is modelling with trend dummies, and 2000, 1983 and 1990 when the

time-series data is calculating with level dummies and trend dummies.

Table 5.4: Kapetanios test

Variable Model 1 Break 2 Breaks 3 Breaks Dates

lnGDP

Only DU −4.5661 −5.0053 −5.8406 (1996/01, 1984/04, 2008/02)

Only DT −4.4374∗∗ −4.7062 −4.7938 (1982/03, 2005/04, 2009/02)

DU and DT −4.4231 −5.1083 −5.9847 (1987/04, 1996/04, 1991/02)

lnGE

Only DU −4.0105 −4.5279 −4.7639 (2006/04, 2010/03, 1990/02)

Only DT −4.8093∗∗ −4.8924∗∗ −6.1571∗∗ (2004/01, 1994/03, 1983/03)

DU and DT −5.2865∗∗ −6.3476∗∗ −6.8665∗∗ (2000/03, 1983/02, 1990/02)

∗∗ significant level at 5% to reject null hypothesis

Kapetanios test does not reject null hypothesis of unit root in GDP process. For government expenditure data,
Kapetanios test reject null hypothesis, then this time-series presents structural breaks in a model whitn trend break
dummy variable.
Source: Instituto Nacional de Estadística y Geografía (INEGI) http: / / www .inegi .org .mx/

Table 5.5 shows the summary statistic for a cointegration test using Engle and Granger
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(1987) method. This method consists of estimating the cointegration regression by ordinary

least square, and applying unit root test for residuals. With these time-series processes, the

cointegration test shows that there is no cointegrating vector that makes the variables have the

same order of integration. In other words, Engle-Granger method cannot reject null hypothesis

of unit root for residuals. This result is obtained by the fact that government expenditure data

have structural breaks.

Table 5.5: Cointegration test using Engle-Gragner method

Without constant Constant
Constant and

trend

ADF test

for residuals
−0.6552 −2.2365 −2.6795

Engle-Granger method cannot reject null hypothesis of unit root for residuals. This result is obtained by the fact
that government expenditure data have structural breaks.
Source: Instituto Nacional de Estadística y Geografía (INEGI) http: / / www .inegi .org .mx/

Johansen et al. (2000) developed a cointegration analysis with a set of variables in the

presence of breaks at known points in time. The method is a slight generalization of the

likelihood cointegration analysis in vector autoregressive models suggested by Johansen (1988).

Table 5.6 presents Johansen test result with structural breaks in government expenditure obtained

by Kapetanios test. In table 5.6 rank means order of cointegration, i.e, rank = 0 means not

cointegration among variables and rank = 1 means one cointegration among variables. Then,

null hypothesis about no cointegration is rejected using structural breaks, it means that one

cointegration vector is possible between those two variables.
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Table 5.6: Johansen test trace with breaks

Model
Breaks

Rank

0 1

Constant

2000/03 27.81∗∗ 5.13

(2000/03, 1983/02) 29.82∗∗ 5.45

Constant and trend

2000/03 25.45∗∗ 7.57

(2000/03, 1983/02) 81.14∗∗∗ 22.31∗∗

∗, ∗∗ y ∗∗∗ significant level for 10%, 5% y 1%, respectively
One cointegration vector is possible between those two variables in Johansen test with breaks.
Source: Instituto Nacional de Estadística y Geografía (INEGI) http: / / www .inegi .org .mx/

As conclusion, government expenditure and economic growth are cointegrated, so both

variables have in long-run association-ship. Those two variables are moving together into

long-run.

5.3 Granger Causality and CCM Causality

We know that government expenditure and economic growth are non-stationary variables, even

government expenditure presents structural breaks in its trend. Engle-Granger cointegration

test fails to detect cointegration between those variables, but a modified Johansen test method

suggests a cointegration relationship. It is now possible to test causality between both variables.

As results in chapter 4, we calculate Granger causality and CCM causality to predict causality

direction between economic growth and government expenditure.
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First, we test these variables in level null hypothesis in Granger causality test is rejected,

i.e. economic growth Granger causes government expenditure. The null hypothesis in CCM

causality is rejected in both sides of causal relationship and correlation in both sides are almost

one. Based on results calculated in a system containing variables with structural changes

CCM methods cannot predict causal direction. In this example, CCM method gives ambiguous

relations.

Table 5.7: Does GDP cause Government expenditure?

Causal relationship GC test TY Test
CCM

(Matlab Central)

CCM

(own creation)

GDP⇒ Government expenditure 4.42∗∗ 0.76 0.97∗∗ 0.98∗∗

Government expenditure⇒ GDP 1.58 0.71 0.97∗∗ 0.94∗∗

Null hypothesis in Granger causality test are tested with a significant level α = 5%. Test static at level equal to
5% and tcritical value for Pearson’s correlation with N − 2 degrees of freedom and α = 5% of significance. With
Granger causality test, we know that GDP drives government expenditure.
Source: Instituto Nacional de Estadística y Geografía (INEGI) http: / / www .inegi .org .mx/

Secondly, we test these first difference variables, null hypothesis in Granger causality tests

is rejected, i.e. economic growth Granger causes government expenditure. The null hypothesis

in CCM causality cannot be rejected in both sides of causal relationship. CCM method cannot

detect causal direction because variables with first difference lose prediction to other time-series.
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Table 5.8: Does GDP cause Government expenditure?

Causal relationship GC test TY Test
CCM

(Matlab Central)

CCM

(own creation)

GDP⇒ Government expenditure 3.09∗∗ 0.92∗∗ −0.05 −0.02

Government expenditure⇒ GDP 1.86 0.59 0.15 −0.08

Null hypothesis in Granger causality test are tested with a significant level α = 5%. Test static at level equal to
5% and tcritical value for Pearson’s correlation with N − 2 degrees of freedom and α = 5% of significance. With
Granger causality tests, we know that GDP drives government expenditure.
Source: Instituto Nacional de Estadística y Geografía (INEGI) http: / / www .inegi .org .mx/

The causal relation could be modelled as,

lnGPOPt = α0 + α1lnY POPt + εt, (5.1)

where ln is the natural log, GPOPt is real total government expenditure, Y POPt is real

Gross Domestic Product and εt is the error term.

Equation 5.1 captures Wagner’s law. Comín et al. (2009) proved that economic growth

causes government expenditure in countries as Argentina, Brazil, Mexico and Spain in twentieth

century period. Samudram et al. (2009) showed a long-run relationship runs from GDP to the

expenditure in the case of a developing country, Malaysia. Tables 5.7 and 5.8 showed that

growth expenditure causes government expenditure for Mexico from 1980 to 2015.
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Conclusions

In science, methods for inference of causality between two or more variables are of great

interest. Granger causality test (Granger, 1969) is used to detect causality in easily separable

linear systems, Sugihara et al. (2012) intriduced an an alternative to detect causality between

two time series when separability is violated. This novel method is named CCM and provides

a framework that uses predictability as opposed to correlation to identify causation between

time-series. CCM has already been used in a wide range of different fields for different kinds

of data (Heskamp et al. (2013); Luo et al. (2014); Maher and Hernandez (2015); Tsonis et al.

(2015)) and it has been noted (McCracken and Weigel (2014) and Mønster et al. (2016)) that

CCM results are not always consistent with theoretical intuitions and parametrization.

Given the increasing interest and alternative to measure causality by CCM, it is important to

understand its strengths and limitations. The present study was designed to present an analysis

of simple model systems. It was noted by Sugihara et al. (2012) that CCM does not correctly

predict the direction of causality in certain coupling of variables, as we have also seen in Section
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4. For example, our analysis shows that CCM method seems sensitive to noise terms and to

particular dynamics (i.e., non-linear independent systems where a chaotic system appears for

growth rate parameter beyond 3.5. This chaotic system has a strange attractor, around which

the system oscillates forever, never repeating itself or settling into a steady state of behaviour. It

never hits the same point twice and its structure has a fractal form, meaning the same patterns

exist at every scale.) where this method fails to predict the right direction of causality. However,

Toda-Yamamoto test betters indicates causal relationships that agree with intuition when noise

terms are added. An advantage of using Toda-Yamamoto test is that it can be applied regardless

of whether a time-series has order of integration zero or greater than zero, non-cointegrated or

cointegrated of an arbitrary order.

The application of CCM to real-world data for purposes of causal inference, in this case

government expenditure and economic growth for Mexico (1980-2015). Granger causality

tests and CCM methods were used to capture the dynamic between those variables. We also

tested for structural breaks in the data and found that government expenditure presents breaks

in 1994 maybe as a result of The Tequila Crisis. Without structural breaks, the null hypothesis

in Engel-Granger test is not rejected. With structural breaks, Johansen test found a cointegrated

vector. Then, economic growth and government expenditure are long-run forcing. On one

hand, Granger causality test and Toda-Yamamto test indicated directional causality from GDP

to government expenditure. These result support Wagner’s law. On the other hand, CCM

algorithms could not indicate a causal relation given limitations in the method as shown in

variables with no-chaotic behaviour, structural breaks and noise term.
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A CCM algorithm

1 f u n c t i o n [Mx, Map , c o r r e ] =CCM(X, Y, tau , E )
2 %% The f u n c t i o n CCM computes t h e method Convergen t Cross Mapping S u g i h a r a
3 % e t a l . ( 2 0 1 2 ) which i s complementa ry t o Granger C a u s a l i t y t e s t .
4 % S i n c e Granger c a u s a l i t y t e s t i s d e s i g n e d t o s t o c h a s t i c da t a , CCM i s
5 % f o r m u l a t e d t o measure c o r r e l a t i o n i n c o u p l e d v a r i a b l e s b e l on g t o
6 % d e t e r m i n i s t i c dynamic sys tem .
7 %
8 % User−S p e c i f i e d I n p u t s :
9 % X: A columm v e c t o r o f d a t a

10 % Y: A column v e c t o r o f d a t a
11 % t a u : a p o s t i v e t ime l a g
12 % E : embedding d imens ion
13 %
14 % User−r e q u e s t e d Outpu t :
15 % Mx: The shadow m a n i f o l d r e c o n s t r u c t e d from X
16 % Map : a c r o s s−mapped e s t i m a t e o f Y
17 % c o r r e : P e a r s o n c o r r e l a t i o n c o e f f i c i e n t be tween t h e o r i g i n a l t i m e s e r i e s
18 % and e s t i m a t e d t ime−s e r i e s o f Y
19 %
20 % R e f e r e c e :
21 % Sug iha ra , G. , May , R . , Ye , H. , Hsieh , C.−h . , Deyle , E . , Foga r ty , M. ,
22 % and Munch , S . ( 2 0 1 2 ) . D e t e c t i n g c a u s a l i t y i n complex e c o s y s t e m s .
23 % s c i e n c e , 338 (6106) : 4 9 6 ? 5 0 0 .
24 %
25 % Author s :
26 % D a n i e l Ventosa−S a n t a u l a r i a and Rubi T o n a n t z i n G u t i e r r e z V i l l a n u e v a
27 % CIDE , S p r i n g 2016
28 L= l e n g t h (X) ;
29 d i s t 1 =L−((E−1)∗ t a u ) ;
30 d i s t 2 = E ;
31 %C r e a t e a m a t r i z Mx c a l l e d " Shadow m a n i f o l d "
32 Mx= z e r o s ( d i s t 1 , d i s t 2 ) ;
33 Map= z e r o s ( d i s t 1 , 1 ) ;
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34 Mx_index= z e r o s ( d i s t 1 , d i s t 2 ) ;
35 %R e c o n s t r u c t e d m a i n f o l d
36 f o r t =1+(E−1)∗ t a u : L
37 f o r t t =1 :E
38 Mx( t −(1+(E−1)∗ t a u ) +1 , t t ) =X( t −( t t −1)∗ t a u ) ;
39 Mx_index ( t −(1+(E−1)∗ t a u ) +1 , t t ) = t −( t t −1)∗ t a u ;
40 end
41 end
42 %G e n e r e a t e a c r o s s−mapped e s t i m a t e o f Y( t )
43 [m n ] = s i z e (Mx) ;
44 Es = z e r o s ( d i s t 1 , E+1) ;
45 D i s t 1 = Es ;
46 f o r t t = 1 :m
47 Aux1 = z e r o s ( 1 ,m) ;
48 % F i n d i n g t h e con temporaneous lagged−c o o r d i n a t e v e c t o r on Mx
49 f o r pp = 1 :m
50 Aux1 ( pp ) = norm (Mx( t t , : )−Mx( pp , : ) ) ;
51 i f Aux1 ( pp ) ==0
52 Aux1 ( pp ) = i n f ( 1 ) ;
53 end
54 end
55 % l o c a t i n g i t s E + 1 n e a r e s t n e i g h b o u r s
56 [B , I ] = s o r t ( Aux1 ) ;
57 f o r r r = 1 : ( E+1)
58 D i s t 1 ( t t , r r ) = B( r r ) ;
59 Es ( t t , r r ) = I ( r r ) ;
60 end
61 % D e t e c t i n g n e i g h b o u r s i n Y
62 u i = z e r o s ( 1 , E+1) ;
63 f o r i i = 1 : ( E+1) % a s s o c i a t e d w e ig h t
64 u i ( i i ) =exp(−D i s t 1 ( t t , i i ) / D i s t 1 ( t t , 1 ) ) ;
65 end
66 Uis = sum ( u i ) ;
67 y t =0 ;
68 f o r yy = 1 : ( E+1)
69 y t =( u i ( yy ) / Uis ) ∗Y ( ( ( E−1)∗ t a u ) +Es ( t t , yy ) ) + y t ;
70 end
71 Map( t t ) = y t ;
72

73 end
74 % CCM c o r r e l a t i o n
75 c o r r e = c o r r (Y( 1 + ( E−1)∗ t a u : L ) , Map) ;
76

77 end
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B Generating nonlinear causal processes

1 f u n c t i o n [X Y] = g e n e r a d o r ( rx , ry , bxy , byx , y1 , x1 , L )
2 %% The f u n c t i o n g e n e r a d o r computes two c o u p l e d d i f f e r e n c e e q u a t i o n s t h a t
3 % e x h i b i t c h a o t i c b e h a v i o r :
4 % X( t +1) = X( t ) [ rx−rxX ( t )−bxyY ( t ) ] . . . 1
5 % Y( t +1) = Y( t ) [ ry−ryY ( t )−byxX ( t ) ] . . . 2
6 %
7 % I n p u t s :
8 % rx : c o n s t a n t and p a r a m e t e r f o r v a r i a b l e X i n e q u a t i o n 1
9 % ry : c o n s t a n t and p a r a m e t e r f o r v a r i a b l e X i n e q u a t i o n 2

10 % bxy : c o r r e l a t i o n between v a r i a b l e X and Y i n e q u a t i o n 1
11 % byx : c o r r e l a t i o n between v a r i a b l e Y and X i n e q u a t i o n 2
12 % x1 : f i r s t v a l u e f o r X
13 % y1 : f i r s t v a l u e f o r Y
14 % L : l e n g t h o f t ime−s e r i e s p r o c e s s e s
15 %
16 % Outpu t :
17 % X: t ime−s e r i e s p r o c e s e s X
18 % Y: t ime−s e r i e s p r o c e s e s Y
19 %
20 % Author : Rubi T o n a n t z i n G u t i e r r e z V i l l a n u e v a
21 % CIDE , S p r i n g 2016
22 %
23 X= z e r o s ( 1 , L ) ;
24 Y= z e r o s ( 1 , L ) ;
25

26 X( 1 ) =x1 ;
27 Y( 1 ) =y1 ;
28

29 f o r i =2 :L
30

31 X( i ) = X( i −1) ∗ ( rx−rx ∗X( i −1)−bxy∗Y( i −1) ) ;
32 Y( i ) = Y( i −1) ∗ ( ry−ry ∗Y( i −1)−byx∗X( i −1) ) ;
33 end
34

35 end
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C Generating nonlinear causal system

1 f u n c t i o n [ x1 , x2 , x3 , x4 , x5 ] = g e n e r a d o r _ s i s t e m a ( va l1 , va l2 , va l3 , va l4 , va l5 , T )
2 %% The f u n c t i o n g e n e r a d o r _ s i s t e m a computes a c o u p l e d sys tem t h a t
3 % e x h i b i t c h a o t i c b e h a v i o r :
4 % X1 ( t + 1) = X1 ( t ) [ c1 + r1X1 ( t ) + b12X2 ( t ) + b14X3 ( t ) ] . . . 1
5 % X2 ( t + 1) = X2 ( t ) [ c2 + b21X1 ( t ) + r2X2 ( t ) + b23X3 ( t ) ] . . . 2
6 % X3 ( t + 1) = X3 ( t ) [ c3 + b31X1 ( t ) + b32X2 ( t ) + r3X3 ( t ) ] . . . 3
7 % X4 ( t + 1) = X4 ( t ) [ c4 + b41X1 ( t ) + b42X2 ( t ) + b43X3 ( t ) + r4X4 ( t ) ] . . . 4
8 % X5 ( t + 1) = X5 ( t ) [ c5 + b51X1 ( t ) + b52X2 ( t ) + b53X3 ( t ) + r5X5 ( t ) ] . . . 5
9 %

10 % I n p u t s :
11 % v a l 1 : c o n s t a n t , p a r a m e t e r s and f i r s t v a l u e f o r v a r i a b l e X1 i n e q u a t i o n 1
12 % v a l 2 : c o n s t a n t , p a r a m e t e r s and f i r s t v a l u e f o r v a r i a b l e X2 i n e q u a t i o n 2
13 % v a l 3 : c o n s t a n t , p a r a m e t e r s and f i r s t v a l u e f o r v a r i a b l e X3 i n e q u a t i o n 3
14 % v a l 4 : c o n s t a n t , p a r a m e t e r s and f i r s t v a l u e f o r v a r i a b l e X4 i n e q u a t i o n 4
15 % v a l 5 : c o n s t a n t , p a r a m e t e r s and f i r s t v a l u e f o r v a r i a b l e X5 i n e q u a t i o n 5
16 % T : l e n g t h o f t ime−s e r i e s p r o c e s s e s
17 %
18 % Outpu t :
19 % x1 : t ime−s e r i e s p r o c e s e s X1
20 % x2 : t ime−s e r i e s p r o c e s e s X2
21 % x3 : t ime−s e r i e s p r o c e s e s X3
22 % x4 : t ime−s e r i e s p r o c e s e s X4
23 % x5 : t ime−s e r i e s p r o c e s e s X5
24 %
25 % Author : Rubi T o n a n t z i n G u t i e r r e z V i l l a n u e v a
26 % CIDE , S p r i n g 2016
27

28

29 x1 = z e r o s ( T , 1 ) ; x2 = z e r o s ( T , 1 ) ; x3 = z e r o s ( T , 1 ) ; x4 = z e r o s ( T , 1 ) ;
30 x5 = z e r o s ( T , 1 ) ;
31

32 x1 ( 1 ) = v a l 1 ( 1 ) ; x2 ( 1 ) = v a l 2 ( 1 ) ; x3 ( 1 ) = v a l 3 ( 1 ) ; x4 ( 1 ) = v a l 4 ( 1 ) ;
33 x5 ( 1 ) = v a l 5 ( 1 ) ;
34

35

36

37 f o r i =2 :T
38

39 x1 ( i ) = x1 ( i −1) ∗ ( v a l 1 ( 2 ) + v a l 1 ( 3 ) ∗x1 ( i −1) + v a l 1 ( 4 ) ∗x2 ( i −1) + . . .
40 v a l 1 ( 5 ) ∗x3 ( i −1) ) ;
41 x2 ( i ) = x2 ( i −1) ∗ ( v a l 2 ( 2 ) + v a l 2 ( 3 ) ∗x1 ( i −1) + v a l 2 ( 4 ) ∗x2 ( i −1) + . . .
42 v a l 2 ( 5 ) ∗x3 ( i −1) ) ;
43 x3 ( i ) = x3 ( i −1) ∗ ( v a l 3 ( 2 ) + v a l 3 ( 3 ) ∗x1 ( i −1) + v a l 3 ( 4 ) ∗x2 ( i −1) + . . .
44 v a l 3 ( 5 ) ∗x3 ( i −1) ) ;
45 x4 ( i ) = x4 ( i −1) ∗ ( v a l 4 ( 2 ) + v a l 4 ( 3 ) ∗x1 ( i −1) + v a l 4 ( 4 ) ∗x2 ( i −1) + . . .
46 v a l 4 ( 5 ) ∗x3 ( i −1) + v a l 4 ( 6 ) ∗x4 ( i −1) ) ;
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47 x5 ( i ) = x5 ( i −1) ∗ ( v a l 5 ( 2 ) + v a l 5 ( 3 ) ∗x1 ( i −1) + v a l 5 ( 4 ) ∗x2 ( i −1) + . . .
48 v a l 5 ( 5 ) ∗x3 ( i −1) + v a l 5 ( 6 ) ∗x5 ( i −1) ) ;
49

50 end
51

52 end
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D Generating linear causal processes

1 f u n c t i o n [X Y] = g e n e r a d o r _ c a u s a l ( cx , rx , cy , ry1 , ry2 , byx , L )
2 %% The f u n c t i o n g e n e r a d o r _ c a u s a l computes two l i n e a r c a u s a l p r o c e s s e s
3 % x ( t ) = cx + rxX ( t −1) + e r r ( t ) . . . 1
4 % y ( t ) = cy + ry1Y ( t −1) + ry2Y ( t −2) + byxX ( t −1) + e r r ( t ) . . . 2
5 %
6 % I n p u t s :
7 % cx : c o n s t a n t f o r v a r i a b l e y i n e q u a t i o n 1
8 % rx : p a r a m e t e r f o r v a r i a b l e X i n t ime t−1 as i t i s shown i n e q u a t i o n 1
9 % cy : c o n s t a n t f o r v a r i a b l e y i n e q u a t i o n 2

10 % ry1 : p a r a m e t e r f o r v a r i a b l e Y i n t ime t−1 as i t i s shown i n e q u a t i o n 2
11 % ry2 : p a r a m e t e r f o r v a r i a b l e Y i n t ime t−2 as i t i s shown i n e q u a t i o n 2
12 % byx : c o r r e l a t i o n between v a r i a b l e Y and X i n e q u a t i o n 2
13 % L : l e n g t h o f t ime−s e r i e s p r o c e s s e s
14 %
15 % Outpu t :
16 % X: t ime−s e r i e s p r o c e s e s X
17 % Y: t ime−s e r i e s p r o c e s e s
18 %
19 % Author : Rubi T o n a n t z i n G u t i e r r e z V i l l a n u e v a
20 % CIDE , S p r i n g 2016
21 %
22 eps1 = randn ( L , 1 ) ;
23 eps2 = randn ( L , 1 ) ;
24 X = z e r o s ( L , 1 ) ;
25 Y = z e r o s ( L , 1 ) ;
26

27 X( 1 ) = eps1 ( 1 ) ; Y( 1 ) = eps2 ( 1 ) ; Y( 2 ) = eps2 ( 2 ) ;
28

29 f o r i = 2 : L
30 X( i ) =cx+ rx ∗X( i −1)+ eps1 ( i ) ;
31 end
32

33 f o r j =3 :L
34 Y( j ) =cy+ ry1 ∗Y( j −1)+ ry2 ∗Y( j −2)+byx∗X( j −1)+ eps2 ( j ) ;
35 end
36

37 end
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E Generating structural breaks in time-series

1 f u n c t i o n [ y , x ] = q u i e b r e s ( T , n , t i p o , phi , t h e t a , mu1 , mu2 , mu3 , mu4 )
2 %% The f u n c t i o n q u i e b r e s computes two l i n e a r c a u s a l p r o c e s s e s wi th
3 % s t r u c t u r a l b r e a k s
4 %
5 % I n p u t s :
6 % T : l e n g t h o f t ime−s e r i e s p r o c e s s e s
7 % n : number o f i n i t i a l c o n d i t i o n s
8 % t i p o : 1 −> I n d e p e n d e n t t ime−s e r i e s
9 % 2 −> Dependent t ime−s e r i e s

10 % 3 −> Dependent t ime−s e r i e s i n t r e n d
11 % p h i : p a r a m e t e r s f o r v a r i a b l e Y
12 % t h e t a : p a r a m e t e r s f o r v a r i a b l e X
13 % mu1 : c o n s t a n t f o r v a r i a b l e X
14 % mu2 : c o n s t a n t f o r v a r i a b l e X
15 % mu3 : c o n s t a n t f o r v a r i a b l e Y
16 % mu4 : c o n s t a n t f o r v a r i a b l e Y
17 %
18 %
19 % Outpu t :
20 % y : t ime−s e r i e s p r o c e s e s y
21 % x : t ime−s e r i e s p r o c e s e s x
22 %
23 % Author : Rubi T o n a n t z i n G u t i e r r e z V i l l a n u e v a
24 % CIDE , S p r i n g 2016
25 %
26

27 uy = randn ( T+n ) ;
28 ux = randn ( T+n ) ;
29

30

31 y = z e r o s ( T+n , 1 ) ;
32 x = z e r o s ( T+n , 1 ) ;
33

34 a= 10+n ;
35 b = ( T+n ) −10;
36

37 y ( 1 ) = uy ( 1 ) ;
38 x ( 1 ) = ux ( 1 ) ;
39

40 cambio1 = a +( b−a ) ∗ r and ( 1 ) ;
41 cambio2 = a +( b−a ) ∗ r and ( 1 ) ;
42

43

44 %I n d e p e n d e n t t ime−s e r i e s x
45 f o r i = 2 : T+n
46 i f i <= cambio2
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47 x ( i ) = mu1 + t h e t a ( 2 ) ∗x ( i −1) + ux ( i ) ;
48 e l s e
49 x ( i ) = mu2 + t h e t a ( 1 ) ∗x ( i −1) + ux ( i ) ;
50 end
51 end
52

53

54 %I n d e p e n d e n t t ime−s e r i e s y
55 i f t i p o == 1
56 f o r i = 2 : T+n
57 i f i <= cambio1
58 y ( i ) = mu3 + p h i ( 2 ) ∗y ( i −1) + uy ( i ) ;
59 e l s e
60 y ( i ) = mu4 + p h i ( 1 ) ∗y ( i −1) + uy ( i ) ;
61 end
62 end
63

64 %Dependent t ime−s e r i e s y
65 e l s e i f t i p o == 2
66

67 f o r i = 2 : T+n
68 y ( i ) = p h i ( 1 ) + p h i ( 2 ) ∗x ( i −1) + uy ( i ) ;
69 end
70

71 %Dependent t ime−s e r i e s y
72 e l s e i f t i p o == 3
73

74 f o r i = 2 : T+n
75 i f i <= cambio2
76 y ( i ) = p h i ( 1 ) + p h i ( 2 ) ∗y ( i −1) + p h i ( 3 ) ∗x ( i −1) + uy ( i ) ;
77 e l s e
78 y ( i ) = p h i ( 1 ) + p h i ( 2 ) ∗y ( i −1) + uy ( i ) ;
79 end
80 end
81

82

83 end
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