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Abstract  
 
 
We investigate the properties of stability and efficiency of friendship networks when 

individuals (i) have arbitrary levels of assortative interests and (ii) are capacity 

constrained in their efforts to form connections. For intermediate levels of assortative 

interests, extreme forms of homophilic (or heterophilic) patterns may coexist as stable 

with more moderate homophilic patterns. In general, though, there is a natural positive 

relation between levels of assortative interests and homophily levels of stable patterns. 

For extreme forms of homophilic (resp., heterophilic) patterns to be stable, connections 

between agents with different (resp., same) characteristics must have a certain minimal 

(good) quality as well. The homophily features of stable networks are affected by the 

tightness of the capacity constraint and by the discrepancies between sizes of different-

characteristic groups. Efficiency requires common aggregate qualities of connections 

(with respect to same-characteristic agents, on one side, and with respect to different-

characteristic agents, on the other side) across all individuals within each different 

population group. Under very high (resp., low) levels of assortative interests, some 

particular forms of only extreme homophilic (resp., heterophilic) patterns are 

simultaneously stable and efficient. For intermediate levels of assortative interests, we 

identify a class of friendship networks that feature intermediate levels of homophily, 

and for which stability and efficiency are compatible. 

 

Keywords: Friendship Networks, Assortative Interests, Homophily, Heterophily, 

Diversity, Integration. 
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6 ♦División de Economía  
 

Resumen 
 
 
Estudiamos las propiedades de la estabilidad y eficiencia de redes de amistad cuando 

los individuos (i) tienen niveles arbitrarios de intereses asortativos y (ii) están 

restringidos en sus capacidades para formar conexiones. Para niveles intermedios de 

intereses asortativos, formas extremas de comportamientos homofílicos (o 

heterofílicos) pueden coexistir como estables con comportamientos homofílicos más 

moderados. En general, sin embargo, existe una relación positiva natural entre niveles 

de intereses asortativos y niveles de homofilia en redes estables. Para que redes con 

formas extremas de homofília (resp., heterofília) sean estables, las conexiones entre 

individuos con distintas (resp., idénticas) características deben tener una cierta calidad 

mínima también. Las propiedades de homofília de redes estables dependen de la 

severidad de las restricciones de capacidad y de las diferencias en tamaños entre 

grupos con diferentes características. Eficiencia requiere que las calidades de las 

conexiones agregadas (respecto a individuos de las mismas características, por un lado, 

y respecto a individuos con características distintas, por otro lado) sean comunes entre 

los individuos dentro de cada grupo de la población. Para niveles muy altos (resp., 

bajos) de intereses asortativos, algunas formas particulares de redes únicamente 

heterofílicas (resp., homofílicas) son simultáneamente estables y eficientes. Para 

niveles intermedios de intereses asortativos, identificamos una familia de redes de 

amistad, con niveles intermedios de homofilia, que son simultáneamente estables y 

eficientes. 

 
Palabras claves: Redes de Amistad, Intereses Asortativos, Homofilia, Heterofilia, 

Diversidad, Integración. 
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The unlike is joined together, and from differences results the most beautiful harmony.

(Heraclitus of Ephesus)

1 Introduction

Friendship relationships articulate the ways in which people socialize and share informa-
tion in all cultures. Based on a variety of reasons, humans choose whom they make friends
with and, further, how much effort they devote to “build the quality” of such ties.

The prevalent view of the empirical literature on sociology, biology, and psychology
(Lazarsfeld and Merton, 1954; Felmlee et al., 1990; Mehra et al., 1998; Christakis and
Fowler, 2014; McPherson et al., 2001; Heaton, 2002) is that people tend to lean towards
others with similar characteristics—a phenomenon known as homophily.1 Numerous ar-
guments have typically been given to explain the presence of high assortative interests
that could underpin observed homophilic patterns: self-identity concerns, risk-sharing
measures, conflict prevention, or even evolutionary selection. Nonetheless, economic
motivations—based mainly on the role of complementaries—(Newman, 2001; Moody,
2004; Guimera et al., 2005; Davis et al., 2003;Watts, 1999; Uzzi, 2008) have also been pro-
posed to rationalize more disassortative interests that could explain observed heterophilic
friendship relations—documented mainly in the realm of scientific collaboration (Page,
2007) and of relations within organizations (Casciaro and Lobo, 2008).

Leaving aside the underlying assortative interests one might consider, all available
evidence—and casual observation—supports the view that people are inherently social.
Conceivably, the average person would like to devote unbounded amounts of resources to
make as many friends as possible and, even further, to establish excellent-quality relations
with such friends. However, we are all undoubtedly constrained in our resources (e.g.,
time) to make friends and to enhance the quality of our relations. Capacity constraints
condition dramatically our decisions about friendship connections. But then, how does
the underlying levels of assortative interests lead to observed homophilic patterns in the
presence of capacity constraints? Can strong heterophilic connections arise in predomi-
nantly homophilic societies, or conversely? Could there exist low or intermediate levels of
homophily under high levels of underlying assortative interests? What are the properties
of efficient patterns when people are constrained in making friends? Can stable patterns be
efficient, and under which conditions? This paper explores these questions by proposing
a fairly general model where people form links that give rise to friendship networks.

We study a setting in which individuals are distinguished according to a certain
(extrinsic) characteristic. Agents must invest quantities of an available resource in order
to form friendship links and to determine the qualities of such links. The investment
technology ismonotone and features strategic independence between the investmentsmade

1The term was coined by Lazarsfeld and Merton (1954).
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by the agents. Therefore, the decision of each person is about how to allocate quantities of
a fixed resource in making friends. Given a resulting friendship network, the preferences
of the agents depend only on the aggregate qualities of their links. Preferences are strictly
monotone and convex. We assume that a (common) level of assortative interests—which is
captured by a certain (exogenous) parameter—is embedded in the agents’ preferences. To
fix notions, we use the term assortative (resp., disassortative) level to refer to the primitive
that captures the degree to which agents prefer to connect with similar (resp., dissimilar)
individuals. We use then the expression more or less homophilic (resp., heterophilic) to
describe the extent to which connections among similar (resp., dissimilar) agents arise as
stable (hence, endogenously) in friendship networks. Following the pertinent literature,
high levels of assortative interests can perhaps be best justified in environments where
friendship serves primarily as a socializationmean, whereas low assortative levels fit better
in environments where the links are mainly used as “instrumental” means.2 For instance,
while white students in a graduate school may seek connections with other white students
for pure entertainment, they may also put efforts in connections with Asian students in
order to collaborate jointly in a term paper or, simply, to learn about their different culture.
To encompass all such possibilities, we take a completely agnostic position relative to
what are the underlying levels of assortative interests. Accordingly, this paper proposes
a comprehensive exploration of stability and efficiency properties of friendship networks,
for any arbitrary level of assortative interests.

Stability of a friendship network requires that no agent has (strict) incentives to change
her aggregate investments in similar and dissimilar people (robustness against individual
deviations) and, furthermore, that no pair of agents benefit (strictly) by changing their
friendship investments (robustness against bilateral deviations). Efficiency of a friendship
network is attained when, under the restriction of the capacity constraint imposed on the
agents, the network maximizes the sum of the agents’ utilities.

We model individual investments in friendship links as continuous choices within the
[0, 1] interval, so that efforts to build each single relationship are naturally assumed to
be bounded. Given this, we are then particularly interested in identifying full-intensity
investments—i.e., investments that equal one. For technical reasons, we consider that a
friendship link arises even when only one of the two involved agents contributes.3 For
simplicity, we also consider that there are only two possible characteristics that the agents
may have. In regard to the capacity constraint, we assume that the available resource allows
each agent to invest fully in each other agent of any of the two possible characteristics, yet
not in all the rest of agents in the population.

Our results naturally point towards a positive relation between (exogenous) assortative

2Recent empirical work on sociology suggests even that the assortative motivations of individuals can
shift through their lifetime. Roughly, the view is that people seeks for “more profound” or “intimate”
relationships at early age and schooling time, whereas their interests for mating shift to “more instrumen-
tal/practical” ones when work becomes central to their lives. The investigation by Thomas (2019) supports
this view and, in particular, finds that racial homophily declines as people age.

3Our main results, though, continue to hold in specifications where mutual investments are required.
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interests and (endogenous) homophilic stable patterns. Yet, even while the stability notion
that we use refinesmost concepts commonly proposed in the literature,4multiple networks,
with very different features in terms of homophily, may arise as stable for assortative
interests that are not too extreme. Second, our main results on stability highlight a feature
on the incentives of pairs to sustain friendship links, which we term as “premium of
mutual efforts.” In particular, under a simple monotone additive-linear technology to
produce linkage quality, both agents in any given pair can benefit strictly if they redirect
simultaneously into each other efforts devoted to other friends (outside from the pair).
As a consequence, if the amount of friendship efforts that any agent could make in some
other agent were unbounded, then no pattern would be stable. Intuitively, Anne and Bob
could always diminish their efforts with respect to some other friends and gain by using
the so saved resources in improving jointly their own relationship. But then Bob and
Charles could do the same, and so on, endlessly. However, as mentioned, the amount of
investments that can be made (and received) for each particular relation are bounded. As
a consequence, the premium of mutual efforts ceases to have effect if one friend is already
saturating what she can invest in the other. This leads to the insight that a stable friendship
networks requires that, in each pair of different agents, at least one of them invests with
full intensity into the other. Obviously, this condition for stability can be achieved with
the proviso of the capacity constraint faced by the agents.

The role on stability played by the premium of mutual efforts tells us a lot about
the friendship connections in stable patterns that feature extreme forms of homophily
or heterophily. For instance, for a resulting network with extreme homophily features,
which we define asmaximally homophilic, the existing links between agents with different
characteristics must be relatively intense as well. In this sense, our model delivers the
message that heterophilic connections of relatively high quality arise in extreme forms of
homophilic patterns. The analog message follows for populations that feature extreme
forms of heterophilic patterns, which we define as minimally homophilic. In addition,
when capacity constraints are relatively tight, it follows that stability of a pattern is easier
to attain whenever, for each pair i, j of friends, only one of them, say i, invests with full
intensity in the other agent j while, at the same time, the recipient j of such effort does
not invest fully in i. In a stable pattern, such a recipient j of the full-intensity effort is
incentivized to devote her own full-intensity efforts to other people k , i. In this sense, a
characteristic of stable patterns is that individuals coordinate in ways such that only one
friend in each relationship acts as “main sponsor” while the other “free rides.” This
message becomes starker as the capacity constraints tighten.

We show that extreme forms of homophilic and heterophilic patterns cannot coexist
simultaneously under a common level of assortative interests. Also such extreme patterns
are harder to sustain as stable ones when the capacity constraint tightens. Instead, tighter

4 In particular, it refines the notions of Nash stability, Pairwise stability, and Pairwise Nash stability.
Interestingly, any further refinement of the stability concept that we use would lead to that no stable network
exists in our setup. In this sense, our approach to stability seeks to meaningfully reduce the multiplicity of
stable networks down to a minimum.
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capacity constraints make it possible for intermediate forms of homophily patterns, which
we label as partially homophilic, to arise as stable ones. Finally our results also show that
extreme forms of homophilic patterns become harder to sustain as stable for societies with
high discrepancies between the sizes of different-characteristic groups. This insight is quite
consistent with the implications of recent empirical analyses (e.g., Currarini et al. (2009)).
Nonetheless, obtaining extreme forms of heterophilic patterns as stable ones in our setting
is not restricted by any discrepancies between the sizes of different-characteristic groups.

With regard to efficiency, the homogeneity assumed in the agents preferences and
capacity constraints, combined with the convexity of such preferences, lead to the key
implication that an efficient friendship network must feature uniform aggregate qualities,
within the agents that have a common characteristic, derived from same-type and different-
type links. This implication highlights a source for inefficiency of stable networks. In
summary, stability requires first that all agents comply individually with the given level
of assortative interests—under the restriction of their capacity constraints. In addition
to this, proposing particular stable patterns requires the construction of minimal sets of
full-intensity investments between pairs of agents to avoid the effects of the premium of
mutual efforts. Given all this, compatibility of stability and efficiency requires then that
the construction of full-intensity investments be such that the induced aggregate qualities
of same-type and different-type links be common across all agents of each characteristic.
For extreme levels of assortative interests, complying with both requirements simultane-
ously, lead to the insight that only some particular forms of maximally (or minimally)
homophilic stable networks are efficient. In some cases, fulfilling simultaneously both
such requirements depends crucially on the sizes of different-characteristic groups.

Equipped with such a central insight, we propose then constructions of minimal sets
of full-intensity investments between agents of a common characteristic that guarantee
efficiency of some minimally homophilic networks, regardless of any discrepancies be-
tween the sizes of different-characteristic groups. As to maximally homophilic networks,
finding the minimal set of full-intensity investments, under which stability and efficiency
are compatible, becomes trickier depending on the sizes of the groups with different
characteristics. We provide a construction of full-intensity investments between agents of
different characteristics that ensures efficiency of some maximally homophilic networks
when the two group sizes coincide. Finally, for intermediate levels of assortative interests,
we also identify stable patterns that feature intermediate degrees of homophily, which we
define as partially homophilic networks. For an intuitive class of partially homophilic
networks, we also derive a construction of full-intensity investments that guarantees the
efficiency of such friendship patterns.

Finally, although any (non-extreme) level of assortative interests may give rise to
multiple classes of stable friendship patterns in our setup, we are able to identify particular
bounds under which only either homophilic, heterophilic, or partially homophilic networks
always exist as stable. Multiplicity of stable networks is a common feature in the literature
on social networks. Therefore, the bounds that we provide—which ensure existence
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and uniqueness—can have useful implications for statistical work. Because extreme
forms of homophilic behavior are extensively documented by the empirical literature,
and the pertinent data can be easily obtained, an econometrician can use our results on
the uniqueness of patterns with common homophily features to infer properties about
underlying assortative interests in many practical scenarios.

The article is organized as follows. Section 2 outlines the baseline model. Section 3
analyzes the properties of stability of friendship networks and Section 4 focuses on their
efficiency features. Section 5 comments on literature connections and Section 6 concludes.
The Appendix provides proofs omitted from the main text.

2 A Model of Formation of Friendship Relationships

There is a population N ≡ {1, . . . , n} of agents that can be distinguished according to a
certain (extrinsic) characteristic—e.g., ethnicity, religious affiliation, education, cultural
background, profession, or age. In particular, each agent has a type θ ∈ Θ ≡ {A, B} that
captures the characteristic. Based on θ, the entire population N can be divided into two
groups of people Nθ with respective sizes nθ ≡ |Nθ |, for θ ∈ Θ, so that N = NA ∪ NB and
n = nA + nB.5

We assume that nθ ≥ 3 for each θ ∈ Θ and, without loss of generality, set nA ≥ nB
throughout. Accordingly, we will refer to group NA as the (weakly) larger group and to NB
as the smaller group. When considering a given a type θ ∈ Θ, we will typically use θ′ to
refer to the alternative type θ′ , θ. Also, for agent i of type θ, we will use the short-hand
notation N i

θ ≡ Nθ \ {i} to indicate the group of agents, other than herself, that have her
own characteristic.

2.1 Friendship Networks

People make decisions about forming friendship links that give rise to friendship networks.
We view friendship links as vehicles of entertainment, communication, or collaboration in
a broad sense. Two linked agents can enjoy time together, receive advice from each other,
or work collaboratively. A friendship network g is collection g ≡ {gi j ∈ [0, 1] | i, j ∈ N}
of linkage qualities gi j ∈ [0, 1] for each pair of agents i, j ∈ N . We use G to denote the set
of all possible friendship networks. A linkage quality gi j captures the quality of the link
that goes from agent i to agent j under network g. Thus, on one extreme, gi j = 0 indicates
that i is not linked to j whereas gi j = 1 describes a full-quality link. Furthermore, we
consider undirected networks in which links are bidirectional so that, by construction,

5The model considers two possible realizations of the characteristic—and, therefore, two population
groups—for simplicity. The main implications, though, continue to follow qualitatively under an arbitrary
number of groups.
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gi j = g ji for each pair of agents i, j ∈ N . We consider that each agent is linked to herself
with full quality, i.e., gii = 1.

2.2 Linking Decisions

Individuals make their linking decisions in a (simultaneous-move) network formation
game. Each agent i makes simultaneously an investment effort xi j ∈ [0, 1] to form a
friendship link with each other agent j , i in the population. The quantity xi j describes
the intensity of i’s investment to become linked with j. The assumption that xi j ∈ [0, 1]
allows for “infinitesimal” investment efforts. An investment strategy for each agent i is
a vector xi ≡ (xi j) j,i ∈ [0, 1]n−1. Let x ≡ (xi)i∈N ∈ [0, 1]n(n−1) be a strategy profile. As
usual, x−i will denote a combination of strategies for all individuals other than agent i.
Similarly, let x−i− j denote a combination of strategies for all individuals excluding the
pair of (different) individuals i and j. Thus, we can express a strategy profile x either as
x = (xi, x−i) or as x = (xi, x j, x−i− j), for j , i.

Investments in a friendship connection determine the quality of the link according to
a simple additive-linear technology.

Assumption 1. Given a strategy profile x, the linkage quality gi j(x) = g ji(x) of the
connection between agents i and j is given by

gi j(x) ≡ (1/2)
[
xi j + x ji

]
. (1)

Investments are thus strategically independent in the technology that determines link-
age quality. Note that, although links are bilateral, a single agent can form a link gi j(x) > 0
by making a positive investment in the relationship—i.e., gi j(x) > 0 whenever xi j > 0
even if x ji = 0. In other words, the formation of a friendship relation does not require a
positive effort by both agents, though its quality is enhanced when both contribute. This
consideration allows us to avoid discontinuities in the linkage quality technology. Let
g(x) denote the friendship network induced by the profile x according to the technology
described by Eq. (1) above.

Given a strategy profile x and an agent i ∈ N , let Ni(x) ≡ { j ∈ N \ {i} | xi j = 1}
be the set of agents, different from i, that receive full-intensity investments from agent i
under the profile x. Also, for agent i of type θ, let the quantity si(x) ≡

∑
j∈N i

θ
gi j(x) capture

the aggregate quality of the links that connect agent i to all other same-type agents, and,
analogously, let di(x) ≡

∑
j∈Nθ ′

gi j(x) describe the total quality of the links that connect
agent i to all different-type agents. When no reference need be made to the underlying
strategy profile x, we will drop the x argument and simply write si and di. Let then
Si ≡ [0, nθ − 1] and Di ≡ [0, nθ ′] be the sets of possible total qualities, respectively, of
same-type and different-type links for agent i of type θ. Allowing for xi j ∈ [0, 1] leads to
that the variables si ∈ Si and di ∈ Di are non-negative real numbers.
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2.3 Preferences

The preferences of an individual i over networks are described by a function πi : G→ R+.
Furthermore, we consider that each agent i cares only about the total qualities (si, di)

associated to her friendship links.6 Specifically, we consider that the function πi has the
form πi(g(x)) = u(si(x), di(x)), where u : Si ×Di → R captures the utility u(si, di) that any
agent i receives from the aggregate qualities (si, di) of her same-type and different-type
friendship links. The function u is common across agents. Notice also that u does not
depend on the entire architecture of the network. This assumption is relatively common
in the literature on friendship networks—e.g., Currarini et al. (2009); Boucher (2015);
Currarini et al. (2017), among others. Under the above considerations, Assumption 2
describes the features that we impose on preferences.

Assumption 2. For each agent i ∈ N , the utility function u is smooth and satisfies:

(1) u(0, 0) = 0 and u(si, di) ≥ 0 for each (si, di) , (0, 0).

(2) u(si, di) is strictly increasing in (si, di).

(3) u(si, di) is strictly concave in (si, di).

(4) There is a given cutoff proportion β ∈ (0,+∞) of qualities of different-type (relative
to same-type) friendship links such that

(a) ∂u(si, di)/∂si = ∂u(si, di)/∂di for each (si, di) such that di/si = β;
(b) ∂u(si, di)/∂si > ∂u(si, di)/∂di for each (si, di) such that di/si > β;
(c) ∂u(si, di)/∂si < ∂u(si, di)/∂di for each (si, di) such that di/si < β.

Assumption 2−(1) is just for normalization. Assumption 2−(2) imposes monotonicity
on the utility that each agent receives from the qualities of her friendship links. Geomet-
rically, in the (si, di) space, the utility from any investments in friendship links increases
in any ray that departs from the origin. Assumption 2−(3) imposes convexity on each
agent’s preferences over the (si, di) space of total friendship qualities.

Assumption 2−(4) is key to describe theway inwhich agents could either be (relatively)
more interested in mating either same-type or different-type individuals. In short, the
condition describes whether agents have either assortative or disassortative interests, as
well as the degree of such interests. In particular, Assumption 2−(4) establishes that (a)
there is a fixed fraction β = di/si—which geometrically corresponds to the slope of a ray
going out of the origin in the space (si, di)—such that the marginal utilities from linking

6This is an important consideration since we are ignoring other plausible ways in which people could
in principle care about the architecture of the resulting friendship network g(x). In particular, we consider
that agents do not care about the identity of the agents they are linked to, neither about the features of their
indirect connections (i.e., features along the paths of friends of own friends).
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with either type of agents are equal. Given this cutoff value β, then (b) if the proportion of
qualities of different-type links (relative to same-type links) lies above the required fraction
β, then the marginal utility from additional qualities of different-type links becomes lower
than the marginal utility from same-type links. The converse condition is described by
condition (c).7

Intuitively, parameter β captures the (common) level of assortative interests in the
population. Values of β in the interval (0, 1) correspond to situations where people lean
relatively more towards assortativity, whereas values of β in the interval (1,+∞) describe
situationswhere disassortative interests dominate.8 Wecan viewmore assortative interests
as naturally based on pure “socialization” motivations and more disassortative interests
as relying on more “instrumental” motivations—usually via complementarities arising
between agents of different characteristics.

2.4 Capacity Constraints

Conceivably, people would like to enjoy unbounded qualities of friendship links with
others, either for pure socialization or for more instrumental reasons. We consider,
though, that agents are exogenously constrained over the total intensity of their friendship
investments. We assume that each agent has a total resource (e.g., of time) Rm > 0
(captured by a positive integer) to invest in friendship links with others. Thus, an important
consideration of themodel is the presence of capacity constraints over the total investments
in friendship qualities. Specifically, we assume

Assumption 3. Each individual i ∈ N is constrained over her friendship investments xi j
according to the restriction

∑
j,i xi j ≤ Rm, for a certain bound Rm ≡ nA + m, where m is

an integer m ∈ M ≡ {1, . . . , nB − 2}.

Notice that, since minm∈M Rm = nA+1 > nA, Assumption 3 allows each agent to invest
with full intensity in links to all other agents from either group, NA or NB, separately. On
the other hand, since maxm∈M Rm = nA + nB − 2 < n − 1, Assumption 3 also implies
that no agent is able to invest with full intensity in links to all the remaining agents in the
population. Of course, this is an obvious requirement to keep the model interesting under
strictly monotone preferences. Higher values of m give us looser (or less tight) capacity
constraints. We consider that the possible values of the total resource Rm are integer

7This condition can be equivalently interpreted in terms of the marginal rate of substitution of the utility
function u between the aggregate qualities si and di . Geometrically, the conditions put structure on the
slopes of the agent’s indifference curves in the (si, di) space.

8Of course, while lower values of the cutoff ratio β ∈ (0, 1) describe higher levels of assortative interests,
higher values of β ∈ (1,+∞) describe higher levels of disassortative interests. An example of a preference
specification u that satisfies all the conditions required by Assumption 2 is that given by a Cobb-Douglas
function u(si, di) = sai db

i such that a > 0, b > 0, and a+ b < 1. In this case, the level of assortative interests
β described in Assumption 2−(4) is equal to β = b/a.
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numbers for technical (and exposure) reasons.9 Let Xi ≡ {xi ∈ [0, 1]n−1 |
∑

j,i xi j ≤

Rm} ⊂ [0, 1]n−1 be the set of agent i’s investment strategies under capacity constraints and
let X ≡ ×i∈N Xi ⊂ [0, 1]n(n−1) be the set of all possible investment profiles under capacity
constraints.

2.5 Stability Notion

Let us use Γ ≡< N,Θ, X, (πi)
n
i=1) > to denote the network formation game that we have

described. To explore stable friendship networks, we resort to a straightforward adaptation
to our game of theweak bilateral equilibrium (wBE) stability concept proposed by Boucher
(2015).

Definition 1. A weak bilateral equilibrium (wBE) of the network formation game Γ is a
strategy profile x∗ that satisfies:

1. robustness against unilateral deviations: for each individual i ∈ N , we have
πi(g(x∗)) ≥ πi(g(xi, x∗

−i)) for each xi ∈ Xi;

2. robustness against bilateral deviations: for each pair of (different) individuals
i, j ∈ N , we have that πi(g(xi, x j, x∗

−i− j)) > πi(g(x∗)) implies π j(g(xi, x j, x∗
−i− j)) ≤

π j(g(x∗)) for each xi ∈ Xi and x j ∈ X j .

A network g is a stable friendship network if there is a weak bilateral equilibrium x∗ of
the network formation game Γ such that g = g(x∗).

Condition 1. of Definition 1 is the best-response condition required by the Nash
stability notion. Condition 2. adds then the requirement that a wBE be immune, not only
against (strictly) profitable unilateral deviations, but also against any possible bilateral
deviation that be strictly beneficial to both agents in the pair. The notion of wBE weakens
the concept of bilateral equilibrium due to Goyal and Vega-Redondo (2007). Yet, it refines
most stability notions commonly used in the literature on network formation. In particular,
wBE refines Nash stability (proposed by Myerson (1991)), Pairwise stability (proposed
by Jackson and Wolinsky (1996)), and Pairwise Nash stability (which combines both the
Nash and the Pairwise stability requirements).

As a prelude to our analysis of stability, we describe the decision problem that each
agent faces when she cares only about her unilateral incentives. Since our assumptions on
preferences depend only on the shape of the function u, it is useful to work with a given
agent i’s (unilateral) problem directly in terms of the variables si and di. For agent i of
type θ, let I s

i (x−i) ≡ (1/2)
∑

j∈N i
θ

x ji and Id
i (x−i) ≡ (1/2)

∑
j∈Nθ ′

x ji be the (normalized)

9Such a discrete set of possible values {nA + 1, . . . , nA + nB − 2} for Rm allows us to have a clear
description of how investment in friendship links can be allocated in the presence of monotone preferences
and capacity constraints.
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total incoming intensities that agent i receives, respectively, from same-type and different-
type people under the combination x−i.10 Then, for a fixed x−i, the unilateral decision
problem that each agent i faces is to choose xi in a way such that the induced total qualities
si = si(xi, x−i) and di = di(xi, x−i) solve the problem

max
{si,di}

u(si, di)

s.t.: I s
i ≤ si ≤ (nθ − 1)/2 + I s

i ;
Id
i ≤ di ≤ nθ ′/2 + Id

i ;
si + di ≤ Rm/2 + I s

i + Id
i

 Di(x−i),
(2)

where

Di(x−i) ≡
{
(si, di) ∈ [I s

i (x−i), (nθ − 1)/2 + I s
i (x−i)] × [Id

i (x−i), nθ ′/2 + Id
i (x−i)]

s.t.: si + di ≤ Rm/2 + I s
i (x−i) + Id

i (x−i)
}

gives us the set of same-type and different-type qualities (si, di) feasible for agent i, given
a profile of investment strategies x−i followed by the rest of agents. Let φi : X−i → Xi
denote the best-response of agent i, specified as11

φi(x−i) ≡ {xi ∈ Xi | u(si(xi, x−i), di(xi, x−i)) ≥ u(si(x′i, x−i), di(x′i, x−i)) ∀x′i ∈ Xi}.

Accordingly, let Φ : X → X , where Φ = (φ1, . . . , φn), be the best-response correspon-
dence of all agents in the society. Then, the Nash stability condition, imposed by 1. of
Definition 1 above, can be equivalently expressed as requiring that x∗ that satisfies the
classical fixed point condition x∗ ∈ Φ(x∗).

Finally, we close this section by introducing four particular values of the level β of
assortative interests in the population that depend on the rest of primitives of the model and
that will play important roles in the analysis of stable and efficient friendship networks.
In particular, the following values of β will be quite relevant:

βL(m) ≡
Rm − (nA − 1)

2(nA − 1)
=
(m + 1)

2(nA − 1)
,

βl(m) ≡
nRm − nA(nA − 1) − nB(nB − 1)

2nA(nA − 1)
=

n(m + 1) + nB(nA − nB)

2nA(nA − 1)
,

βh(m) ≡
nA

Rm − nA
=

nA

m
, and βH(m) ≡ 2βh(m) =

2nA

m
.

(3)

Recall that m = Rm − nA ∈ {1, . . . , nB − 2}.

10Wewill drop the x−i argument when no reference need bemade to the underlying strategy combination.
Note that si = (1/2)

∑
j∈N i

θ
xi j + Isi and di = (1/2)

∑
j∈Nθ′

xi j + Idi for each strategy profile x ∈ X .
11The correspondence φi can be equivalently specified as φi(x−i) ≡ {xi ∈ Xi | πi(g(xi, x−i)) ≥

πi(g(x ′i, x−i)) ∀x ′i ∈ Xi}.
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3 Stability of Friendship Networks

We follow a two-step strategy to explore stability features of friendship networks. In the
first step, we characterize (in Lemma 1) the optimal investment strategy of any given agent
as a best-response to the investments strategies chosen by the rest of individuals. This
step allows us to explore the unilateral incentives to deviate from a given network. By
considering networks where all agents best-reply to the rest of agents, we derive Nash
stable networks, as required by condition 1. of our stability notion (Definition 1). The
second step consists of identifying—and thereby ruling out—plausible bilateral deviations
from any given network that is already robust against unilateral deviations. The bilateral
deviations ruled out in the second step (in Lemma 2) shed light on the class of deviations
that can be bilaterally profitable (conditional upon networks which are already immune
against unilateral deviations). Accordingly, these two steps combined provide conditions
to identify stable networks according to both 1. and 2. of Definition 1

3.1 Step I–Unilateral Optimal Decisions

Let us consider a given agent i’s decision problem in terms of the qualities (si, di), as
described in Eq. (2). From the monotonicity condition of Assumption 2−(2), we observe
that agent i wishes to choose xi so as to induce the highest possible qualities si and di. In
her decision, though, the agent is constrained by the number of available people of each
type, by the incoming investments from other individuals, and by her capacity constraint
as required by Assumption 3. Analyzing agent i’s (unilateral) problem boils down to
studying how the linear constraints that describe the feasible set Di(x−i) of the problem in
Eq. (2) bind in plausible solutions.

The solutions to problem Eq. (2) can be easily analyzed with the aid of Fig. 1. The
figure depicts in blue the feasible set Di(x−i) of the problem in Eq. (2). The (saturated)
capacity constraint

si + di = Rm/2 + I s
i + Id

i , (4)

which follows directly fromAssumption 3, is displayed as the green dotted line in the figure.
Also note that the black dotted line would correspond to a hypothetical capacity constraint
for the (uninteresting) case in which we could have Rm = n−1—which would allow agents
to be friends of everyone else with full quality. Therefore, under our consideration that
Rm < n − 1 (Assumption 3), we know that the actual capacity constraint lies necessarily
below the black dotted line and that the shape of the feasible set Di(x−i) is always as
depicted in the figure. The rays in red correspond to three possible levels of assortativity
interests β > β′ > β′′, as described by Assumption 2-(4). In the figure, β gives us
disassortative interests, whereas β′ and β′′ give us two different levels of assortative
interests.12 For a fixed x∗

−i ∈ Xi, the optimal choice (s∗i , d
∗
i ) of agent i is described by the

12Recall that the marginal rate of substitution of u—which geometrically gives us the slope of its
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point where the highest indifference along the corresponding ray β intersects the feasible
set Di(x∗−i).

To ease the notational burden, we find useful to set, for a given type θ of a given agent
i, and for a fixed combination of strategies x−i, the following values for the level β of
assortativity interests:

β(θ; x−i) ≡
Rm − (nθ − 1) + 2Id

i (x−i)

(nθ − 1) + 2I s
i (x−i)

and β(θ; x−i) ≡
nθ ′ + 2Id

i (x−i)

Rm − nθ ′ + 2I s
i (x−i)

. (5)

Since u is smooth and concave, the respective solutions to the problem in Eq. (2) can always
be obtained as captured by [a], [b], and [c] in the figure. The arguments above lead directly
to the algebraic description, that we summarize in Lemma 1, of the unilateral optimal
behavior of each individual in terms of the variables si = si(xi, x∗

−i) and di = di(xi, x∗
−i) as

a best-response to a strategy combination x∗
−i chosen by the rest of individuals.

Lemma 1. Assume Assumption 1—Assumption 3, and consider a preference specification
u. Take a given agent i ∈ N , and take a given strategy combination x∗

−i chosen by the
agents other than i. Consider the unilateral problem of agent i specified in Eq. (2). Then,
the solutions to such a linear problem are described by:

s∗i =
(nθ − 1)

2
+ I s

i , d∗i =
Rm − (nθ − 1)

2
+ Id

i if 0 < β ≤ β(θ; x∗−i). [a]

s∗i =
(

1
1 + β

) (
Rm

2
+ I s

i + Id
i

)
, d∗i = βs∗i if β(θ; x∗−i) ≤ β ≤ β(θ; x∗−i); [b]

and
s∗i =

Rm − nθ ′
2

+ I s
i , d∗i =

nθ ′
2
+ Id

i if β ≥ β(θ; x∗−i); [c]

Notice that, relative to the capacity constraint in Eq. (4), solutions [a] and [c] are
corner solutions, whereas [b] is an interior solution. The solutions given by [a], [b], and
[c] to the problem in Eq. (2) describe the three key qualitative cases that can take agent i’s
(unilaterally optimal) investment—stated in terms of the total qualities (si, di), for a fixed
choice x∗

−i by the rest of agents.

If each agent i ∈ N chooses her investment strategy x∗i ∈ Xi as described in Lemma 1,
for each given x∗

−i ∈ X−i, then the resulting network g = g((x∗i , x∗
−i)) is Nash stable. Let us

denote by NS(u) ⊂ G the set of Nash stable networks for a preference specification given
by u. Existence of Nash stable networks in the proposed network formation game Γ, for
any given u, follows directly from the following modeling choices: (1) xi ∈ [0, 1] for each
agent i, (2) the presence of capacity constraints, and (3) the assumption that u is smooth
and concave.13
indifference curve—equals one along the respective ray associated to each cutoff value β, exceeds one above
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di

si(nθ − 1)/2 + IsiIsi (n − 1)/2 + Isi + IdiRm/2 + Isi + Idi

nθ′/2 + Idi

Idi

di = si

•
[c]
•
[b]
•[a]

si = (Rm − nθ′)/2 + Isi

di = [Rm − (nθ − 1)]/2 + Idi
Di

β

β′

β′′

Figure 1 – Optimal choices of (si, di) for a given x∗
−i .

3.2 Step II–Bilateral Optimal Decisions

After ruling out unilateral deviations, stable networks follow then by preventing bilateral
deviations as well, as described by condition 2. of Definition 1. Lemma 2 provides the key
necessary and sufficient condition for a Nash stable network g(x) ∈ NS(u) to be immune
against bilateral deviations.

Lemma 2. Assume Assumption 1—Assumption 3, and consider a preference specification
u. Consider a strategy profile x ∈ X that induces a Nash stable friendship network
g = g(x) ∈ NS(u). Then, any given pair of two (different) agents i, j ∈ N does not
have incentives to bilaterally deviate from the profile x, as described by condition 2. of
Definition 1, that is,

πi(g(x′i, x′j, x−i− j)) > πi(g(x)) ⇒ π j(g(x′i, x′j, x−i− j)) ≤ π j(g(x))

for each x′i ∈ Xi and x′j ∈ X j if and only if j < Ni(x) ⇒ i ∈ Nj(x).

the ray, and it is less than one below the ray.
13Specifically, since u is smooth and concave, and X ⊂ Rn(n−1) is a compact real set, it follows that the

best-response correspondence Φ of the agents in the population is upper hemi-continuous. Furthermore the
correspondenceΦ satisfies thatΦ(x) is non-empty, closed, and convex for each profile x ∈ X . By Kakutani’s
fixed point theorem, we then know that, under the capacity constraints considered in Assumption 3, a Nash
stable network always exists for any preference specification u that satisfies Assumption 2 in our network
formation game Γ.
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The logic behind the condition derived in Lemma 2 is as follows. Under themaintained
assumptions, if we start from a strategy profile that induces a Nash stable network, then
there could exist a unique class of bilateral deviations that be strictly beneficial to each
agent from any given pair of agents in the society. This class of (potentially) profitable
deviations is enabled by the consideration that nθ ≥ 3 for each type θ ∈ Θ.

Notice first that, in any Nash stable network, each agent must exhaust the available
resource Rm. Then, we consider (potential) deviations in which each of the two agents
from a fixed pair were able to decrease their investments in some other agents by certain
arbitrary amounts. Given this, we consider the possibility that both agents could also be
able to invest the so saved amounts into each other. Because of the simple additive-linear
technology for generating linkage quality considered in Eq. (1), this type of deviations
would clearly be strictly profitable for both agents. At a more intuitive level, the suggested
(potential) deviations capture natural situations where two friends benefit from “synergies”
by mutually increasing the efforts they devote to their own relationship. We term the
incentives behind this class of (potential) deviations as “premium of mutual efforts”
because both agents in a given pair benefit strictly by mutually redirecting third-party
investments into each other. Note that, under the capacity constraints, each of the two
agents needs to lower her efforts in other friends who, given the definition of bilateral
deviation, would in turn maintain their investments in them. Furthermore, under our
monotonicity assumptions in the presence of capacity constraints, the only class of bilateral
deviations—starting from a Nash stable network—that could result strictly beneficial to
both agents in a given pair is the one described above. This is the case because, starting
from a profile where all agents exhaust their resources, the only way of in which the two
members of a given pair can benefit strictly is by redirecting third-party investments. Any
other type of bilateral deviations would either harm or leave indifferent at least one of the
agents in the pair.

To ensure then that a friendship Nash stable network is immune against this class of
deviations, we need to restrict attention to strategy profiles in which at least one agent
in each possible pair cannot increase any further her investment in the other agent, as
stated in Lemma 2. Thus, to propose a stable friendship pattern, we need to construct a
minimal set of full-intensity investments across all agents. An intuitive insight that stems
form such minimal sets, in the presence of (common) capacity constraints, is then that (in
stable networks x) each particular friendship relationship gi j(x) is mainly sponsored by
only one of the two friends, say i, while the recipient j of the full-intensity investment
sponsors other relationships. As the capacity constraints tighten, the recipient j of the
full-intensity effort in each particular relationship reciprocates less with her friend i. Only
by doing so, the recipient j is able to save amounts of the resource Rm to fulfill the
required full-intensity investments in other agents k , i. The reasoning behind the above
described (unique) class of (potentially) profitable bilateral deviations from Nash stable
networks—which are prevented by the condition provided by Lemma 2—will be crucial
to explore stable friendship networks. In particular, Proposition 1 and Proposition 2 will
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resort to adjusted versions of the condition stated in Lemma 2.

Importantly, notice that the class of (potentially) profitable bilateral deviations consid-
ered in the result of Lemma 2 would continue to work, given the simple linkage quality
technology specified in Eq. (1), if we additionally required that gi j(x) = g ji(x) > 0 only if
xi j x ji > 0—i.e., if we required that the link were formed only when both agents contribute
a positive amount of investment to their relationship. Furthermore, the description that we
give of the premium of mutual efforts, and the role that it plays in stability, is also robust
to alternative quality technology specifications, with the restriction that such a technology
be linear and with uniform slopes across the investments of all agents in the population.
Under such technologies, for situations where at least one agent from a given pair does not
invest fully in the other agent, both agents would benefit strictly by redirecting third-party
investments because the so induced changes in aggregate qualities are linear according to
a common slope. More specifically, consider a technology given by

gi j(x) = g ji(x) = A + Bxi j + Bx ji,

where A ≥ 0, B > 0 and A + 2B ≤ 1. Suppose, without loss of generality, that β < 1,
so that there are assortative interests in the population, and that the two agents i and
j have the same type. Consider now situations where xi j < 1 and x ji < 1. Then,
suppose that agent i decreases her investment in some other agent k < {i, j} by an amount
0 < εi ≤ 1 − xi j and that j decreases her investment on some other agent l < {i, j} by an
amount 0 < ε j < 1 − x ji. This is enabled by the assumption that nθ ≥ 3 for each type
θ ∈ Θ. The argument continues to be valid if we have k = l. Then, suppose that the two
agents i and j invest the saved amounts εi and ε j simultaneously into each other. In this
case, the quality of their link increases by an amount B(εi + ε j). The quality of the link
between agents i an k decreases by an amount Bεi and the quality of the link between
agents j and l decreases by an amount Bε j . For the case where k and l have also the same
characteristic that agents i and j, it follows then that si increases by a net amount of Bε j
and s j increases by a net amount of Bεi. Also, di and d j remain unchanged. Since B > 0,
this deviation is profitable to both agents i and j. To comment on other possibilities,
now suppose, for instance, that k has a type different from the type of agents i. Then, if
agent l has the same type that agent j, the proposed deviation implies the same change in
j’s utility as described above. As to agent i, the proposed deviation now entails that si
increases by a net amount of B(εi + ε j) while di decreases by a net amount of Bεi. Now,
since B > 0 and β < 1, it follows that the proposed deviation continues to be strictly
profitable for agent i. Similar arguments can be analogously provided for the cases where
agents i and j have different types and/or β > 1 because each population group consists
at least of three agents.

Our description of the premium of mutual efforts, however, does not go through under
more general technology specifications of linkage quality technology. For instance, the
identified class of (potentially) beneficial bilateral deviations does not work as considered
in this paper if either gi j(x) were linear in xi j and x ji with different slopes, or if gi j(x)

15



were strictly concave or convex in the agents investments. Nevertheless, our particular
assumption of linear technology (with the form given by Eq. (1)) gives us a reasonable
and simple formulation of how investments produce linkage quality for a continuous
investment choice. Given the degree of generality that we consider on the utility function
u, more complex technology specifications would obviously make intractable the exercise
of deriving general properties of stable friendship patterns.

Finally, let us comment on the existence of stable networks in the proposed model. In
some parts of the analysis, we will need to deal with the fact that the sizes of the population
groups NA and NB can be either odd or even. To this end, it is useful to specify the number

α(r) ≡

{
r/2 if r is even;
(r − 1)/2 if r is odd

for any given integer r > 1. The number α(r) accounts for either half of r or half of r − 1,
depending on whether r is an even or an odd integer, respectively. A necessary condition
for the investment conditions required by Lemma 2 to be satisfied is that the size of total
resource Rm available to the agents be sufficiently large. In particular, if Rm ≥ α(n), then
each agent can take on the burden of full-intensity investments for (approximately) half
of the population. Furthermore, α(n) gives the minimum size of the (common) resource
that ensures that the condition required in Lemma 2 can be satisfied. Notice, though, that
Rm ≥ α(n) is always guaranteed under Assumption 3 since minm∈M Rm = nA + 1 > α(n).
Therefore, under Assumption 2 and Assumption 3, for each preference specification u,
the necessary condition required to obtain the implication of Lemma 2 is satisfied. This,
however, does not directly ensure the existence of a stable friendship network for each
possible tuple (β, Rm, nA, nB). In our setting, the presence of (homogeneous) capacity
constraints, combined with discrepancies between the groups sizes, may conflict crucially
with the incentives described by the level of assortative interests β.

In particular, we make no claims regarding existence of stable patterns for “interme-
diate” levels of the assortative interest β. We are able, though, to guarantee existence
(and uniqueness in some cases) of stable friendship networks for each possible tuple
(β, Rm, nA, nB), under the restriction to relatively high or low (dis)assortative interests—
given by β. As argued earlier (in Subsection 3.1), existence of Nash stable patterns is
in fact ensured in our setting for each possible tuple (β, Rm, nA, nB). Yet, once the agents
comply with their individual incentives (according to the level of assortative interest β),
stability additionally requires the construction of minimal sets of full-intensity invest-
ments, in order to prevent profitable bilateral deviations. To illustrate the difficulties that
may arise regarding existence for intermediate levels of assortative interests, consider a
population in which the sizes of the two groups differ greatly and suppose that the capacity
constraints that face the agents are very tight. Suppose that the level of assortative interests
is intermediate and, accordingly, consider a resulting Nash stable network g(x) ∈ NS(u)
such that some agents have unilateral incentives to invest primarily in same-type fellows
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(as in [a] of Fig. 1) while other agents have unilateral incentives to invest amounts in both
same-type and different-type agents (as in [b] of Fig. 1). In the case where the capacity
constraints are as tight as possible, each agent will be able to invest with full intensity in
only α(n) other agents. We can intuitively observe then that some agents many not be able
to simultaneously comply with their individual assortative interests and meet their shares
of full-intensity contributions, which are required to prevent bilateral deviations. For
instance, if agents of the smaller group want to behave unilaterally as in as in [b] of Fig. 1,
then they wish to invest large amounts in relations with members of a much larger group.
Therefore, the investments that they devote to their heterophilic connections might leave
then with not enough slack resource so as to comply with the overall minimal full-intensity
requirements. As a consequence, it might well be the case a network g(x) ∈ NS(u) be not
immune against beneficial bilateral deviations.

Let us use S(u) ⊂ NS(u) to denote the set of stable friendship networks for a given
preference specification u. Wewill be more specific as to when we can guarantee existence
of stable patterns in Subsection 3.5.

3.3 Classifying Friendship Patterns in Terms of Homophily

Our analysis of stable networks will focus on two classes of patterns where the resulting
homophily levels are, respectively, very high and very low. On the one hand, we will study
networks in which all agents invest with full intensity in links to all others of their same
type. Given this, each agent will devote the remaining of her resource Rm to different-
type agents. We will refer to such networks as maximally homophilic networks. On the
other hand, we will consider networks in which all agents invest with full intensity in
different-type agents. Then, the agents will devote the remaining of their resources to
links to agents of their same type. We refer to this latter class of patterns as minimally
homophilic networks. Note that, under the above described homophily criteria, both
classes of networks yet encompass a wide variety of possible particular architectures.

The sets Ni(x) introduced earlier (in Subsection 2.2) are quite useful to capture ho-
mophily features of the network g = g(x). Under monotone preferences and capacity
constraints, we can naturally interpret that, under g = g(x), agent i is more interested in
being friends with the agents in the set Ni(x), relative to mating other agents that do not
belong to Ni(x).

Definition 2. Consider a strategy profile x that induces a friendship network g = g(x).
Then,

(a) the network g is said to be maximally homophilic if for each agent i ∈ N of type θ,
and for each type θ ∈ Θ, we have N i

θ ⊆ Ni(x), and

(b) the network g is said to be minimally homophilic if for each agent i ∈ N of type θ,
for each type θ ∈ Θ and for the alternative type θ′ , θ, we have Nθ ′ ⊆ Ni(x).
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To complete our analysis of stable patterns, we will also explore networks that feature
intermediate levels of homophily—relative to maximally and minimally homophilic net-
works. Here, we will take the simple approach to regard a friendship network as partially
homophilic whenever it is neither maximally nor minimally homophilic.

Definition 3. Consider a strategy profile x that induces a friendship network g = g(x).
The network g is said to be partially homophilic if for some type θ ∈ Θ, we have that
either

(a) there is some agent i of type θ such that Ni(x) ⊂ N i
θ , with Ni(x) , N i

θ , or

(b) there is some agent j of type θ such that Nj(x) ⊂ Nθ ′, with Nj(x) , Nθ ′,

or both (a) and (b).

The empirical literature on social networks makes use of interesting measures to assess
homophily levels using the available data. We introduce now (adjusted versions) of such
measures and compare them with our notions of maximally and minimally homophilic
networks. The measures given by Definition 4 below build closely upon the measures
used by Currarini et al. (2009).14 Consider a strategy profile x ∈ X that induces a network
g = g(x). Let s̄θ(x) ≡

∑
i∈Nθ

si(x)/nθ and d̄θ(x) ≡
∑

i∈Nθ
di(x)/nθ be the average qualities

of the links of type θ agents towards, respectively, same-type and different-type agents.

Definition 4. Given the network g = g(x), the homophily index Hθ(x) of type θ ∈ Θ is
given by Hθ(x) ≡ s̄θ(x)/[s̄θ(x) + d̄θ(x)]. Then, the network g = g(x) satisfies inbreeding
homophily relative to type θ if Hθ(x) > nθ/n. Similarly, the network g = g(x) satisfies
inbreeding heterophily relative to type θ if Hθ(x) < nθ/n.

The term “inbreeding homophily” has been widely used by the sociological literature
(Coleman, 1958; Marsden, 1987; McPherson et al., 2001) and, in particular, the criteria
specified in Definition 4 have been applied to assess empirically homophily levels in pop-
ulations.15 Now, we wish to study whether our proposal of maximally (resp., minimally)
homophilic networks is in consonance with inbreeding homophily (resp., heterophily).
The following lemma sheds light on the relation between the two extreme homophily
features proposed in this paper and the measure of inbreeding homophily/heterophily.

Lemma 3. Under the proposed model, consider that Assumption 2 and Assumption 3 hold.
Consider a given available resource Rm = nA + m, where m ∈ {1, 2, . . . , nB − 2}. Then:

(i) a maximally homophilic network g = g(x) satisfies inbreeding homophily with
respect to type θ if and only if the sizes NA and NB satisfy the following condition relative
to the available resource: m < (nB − 3) + 2nθ/(nA + nB);

(ii) each minimally homophilic network g = g(x) satisfies inbreeding heterophily with
respect to each type θ ∈ Θ.

14Rather than the average number of links, though, we rely on the average quality of the links.
15The logic behind such criteria lies in capturing how groups tend to “inbred” in same-type friendship

connections relative to their respective fractions of the entire population.
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Sincewe are considering that nA ≥ nB, it follows directly that (nB−3)+2nA/(nA+nB) ≥

nB −2. Given that m ∈ {1, 2, . . . , nB −2}, we observe then that any maximally homophilic
network satisfies inbreeding homophily for type θ = A. On the other hand, nA ≥ nB implies
that (nB − 3) + 2nB/(nA + nB) ≤ nB − 2. Therefore, whether a maximally homophilic
network satisfies inbreeding homophily for the smaller population group is unclear and it
depends crucially on the size of the available resource. For instance, if the sizes of the
population groups are different, and the capacity constraint is as loose as possible so that
m = nB − 2, then each maximally homophilic network satisfies inbreeding heterophily for
the smaller group. In general, Lemma 3 (i) shows that tighter capacity constraints (i.e.,
lower values of Rm) facilitates that a maximally homophilic network satisfy inbreeding
homophily as well for the smaller population group.16

3.4 Stable Friendship Networks

Armed with the previous insights about unilateral and bilateral optimal choices, we are
ready now to explore stable friendship networks.

The conditions provided by Proposition 1 below characterize strategy profiles that
induce stable maximally homophilic networks. Given a strategy profile x ∈ X , the
following upper bound

β̂(x) ≡ inf
i∈Nθ, θ∈Θ

Rm − (nθ − 1) +
∑

j∈Nθ ′
x ji

2(nθ − 1)

on the level of assortative interests of the population will be useful to understand how
assortative interests lead to maximally homophilic networks.17

Proposition 1. Assume Assumption 1—Assumption 3, and consider a preference specifi-
cation u. Let x a strategy profile that induces a maximally homophilic friendship network
g = g(x). Then, the network g is stable, i.e., g ∈ S(u), if and only if:

1. Robustness against unilateral deviations: the level of assortative interests of the
population described by β is sufficiently high, with the particular form given by β ≤ β̂(x).

2. Robustness against bilateral deviations: provided that the resource Rm is sufficiently
large, with the particular form given by Rm ≥ (n−1)−nAnB/n, then for each pair of agents
from different groups, i ∈ NA and j ∈ NB, we have j < Ni(x) ⇒ i ∈ Nj(x).

Condition 1. of Proposition 1 ensures that no agent has unilateral incentives to deviate
from investing with full intensity in each other same-type individual. The condition makes

16 In particular, simple algebra shows that the condition m < (nB − 3) + 2nB/(nA + nB) can equivalently
be rewritten as m < (nB − 1) − 2nA/(nA + nB). Since we are considering that nA ≥ nB, we know that
(nB − 1) − 2nA/(nA + nB) ≤ nB − 2. Furthermore, such a condition holds with equality only if nA = nB,
whereas it holds with strict inequality otherwise.

17Recall that the level of assortative interests increases with the cutoff slope β. Accordingly, we derive
an upper bound on the level of assortative interests by considering a lower bound on the slope β.
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use of the bounds β(θ; x−i) (for each agent i ∈ Nθ and each type θ ∈ Θ) that guarantee
unilateral optimal choices as the one described by [a] in Fig. 1. In addition, contingent
on the size of the resource Rm being sufficiently large, condition 2. of Proposition 1
guarantees that no pair of agents have bilateral incentives to (jointly) deviate from profiles
that induce maximally homophilic networks.

Interestingly, provided that the resource Rm is relatively large, even in the presence
of high assortative interests, patterns of extreme homophily features can be sustained as
stable ones only if links of a certain (relatively high) quality between agents of different
types arise as well. In particular, there must exist a link between each pair (i, j) of different-
type agents with quality gi j no less than 1/2. In short, a certain degree of qualities of
heterophilic relations is necessary to sustain maximally homophilic stable networks.

Proposition 1 characterizes investments profiles that lead to maximally homophilic
networks, in terms of the primitives nA, nB, β, Rm. Naturally, maximally homophilic
networks require that the level of assortative interests of the agents be sufficiently high.
Nonetheless, multiple networks, not all of them necessarily being maximally homophilic,
arise as stable ones for the levels of assortative interests captured by Proposition 1. As an
antidote to such multiplicity issues, Corollary 1 gives us a bound on the level of assortative
interests that guarantees the existence of only maximally homophilic networks.

Corollary 1. Assume Assumption 1—Assumption 3, and consider a preference specifi-
cation u. Let x be a strategy profile that induces a friendship network g = g(x). Provided
that Rm ≥ (n − 1) − nAnB/n, suppose that x satisfies that for each pair of agents from
different groups, i ∈ NA and j ∈ NB, we have j < Ni(x) ⇒ i ∈ Nj(x). Then, if the level of
assortative interests in the population is sufficiently high, with the particular form given
by β < βL(m), where βL(m) is the bound on β specified in Eq. (3), then the unique class
of stable networks consists entirely of maximally homophilic netwoks.

The sufficient condition stated in Corollary 1 follows directly by considering a bound
βL(m) on the cutoff values β̂(x) such that, if β < βL(m), then: (a) no partially homophilic
network, as described in Definition 3, can be sustained as stable and (b) each agent would
strictly prefer to invest with full intensity in all other same-type agents, as captured by [a]
of Fig. 1. Upon considering an agent i ∈ Nθ who does not invest with full intensity in
each other same-type agent, such a bound βL(m) can be derived by noting that β(θ; x−i)

cannot be (strictly) lower than [Rm − (nθ − 1)]/2(nθ − 1), which would correspond to a
(hypothetical) situation where

∑
j∈Nθ ′

x ji = 0 and
∑

j∈N i
θ

x ji = (nθ − 1) (that is, agent i
would receive no investments whatsoever from different-type agents and full investments
from all other same-type agents). Then, if β < [Rm − (nθ − 1)]/2(nθ − 1), it follows that
even such an agent, who would be in the best position to behave unilaterally either as [c]
or [b] of Fig. 1, would rather choose to invest in all other same-type agents instead, as
captured by [a] in Fig. 1. Notice that the magnitude of the bound βL(m) considered in
Corollary 1 depends crucially on the size of the available resource Rm.18

18 In particular, βL(m) increases with Rm in the interval βL(m) ∈
[
1/(nA − 1), (nB − 1)/2(nA − 1)

]
.
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Wewould like to use the insights from Proposition 1 to explore further certain features
of maximally homophilic stable networks. Note that the conditions described by the
proposition yet allow for a broad class of networks to be stable. Motivated by the
consideration that all agents in the society face a common available resource Rm, we
pay special attention to stable networks in which the burden of full-intensity investments
between the agents that belong to different groups is distributed across the agents in a
relatively uniform way. Corollary 2 gives us conditions under which a class of maximally
homophilic networks, with certain symmetries in the amounts invested by the agents,
arise as stable ones. To this end, it is convenient to introduce first the details of a certain
partition of any of the two population groups Nθ , for θ ∈ Θ.

Observation 1. Upon relabelling the names of the agents (say, switching indexes from i
to ik and jk), let us partition each of two groups Nθ , for θ ∈ Θ, into two sets, N L

θ and NH
θ ,

according to: (a) NA is partitioned into N L
A = {i1, . . . , iα(nA)} and NH

A = {iα(nA)+1, . . . , inA},
whereas (b) NB is partitioned into N L

B = { j1, . . . , jα(nB)} and NH
B = { jα(nB) + 1, . . . , jnB }.

The partition specified in Observation 1 separates each group Nθ into two subgroups,
N L
θ and NH

θ , of the same size if the number of agents nθ in the group is even. If the
number of agents in the group Nθ is odd, then the set NH

θ contains just one more agent
than the set N L

θ . Thus, under the obvious restriction that agents are indivisible, the sizes
of the resulting subgroups N L

θ and NH
θ are the most similar possible ones. Provided

that the level of assortative interests and the size of the resource are sufficiently large,
Corollary 2 describes a class of maximally homophilic networks in which each agent
from each group Nθ takes on the burden of full-intensity investments across different-type
agents for (roughly) half of the agents from Nθ ′, for θ′ , θ.19 In particular, we construct a
minimal set of full-intensity investments across different-type agents which are distributed
across the agents in a relatively uniform way.

Corollary 2. Assume Assumption 1—Assumption 3, and consider a preference specifi-
cation u. Then, provided that the capacity constraint is sufficiently loose, with the particular
form Rm ≥ nA+ (nB − 1)/2, if the level of assortative interests is sufficiently high, with the
particular form β ≤ [Rm + (nB − nA)]/2(nA − 1) = (m + nB)/2(nA − 1), then there exists
a class of strategy profiles x ∈ X , invariant to any relabelling of the names of the agents,
which induces maximally homophilic stable networks g = g(x) ∈ S(u).

In particular, given the partitions of groups detailed in Observation 1, such a class of
strategy profiles x can be described as: (1) each agent i ∈ N L

A invests with full intensity
xi j = 1 in each agent j ∈ N L

B , and each agent i ∈ NH
A invests with full intensity xi j = 1 in

each agent j ∈ NH
B , whereas (2) each agent j ∈ N L

B invests with full intensity x ji = 1 in
each agent i ∈ NH

A , and each agent j ∈ NH
B invests with full intensity x ji = 1 in each agent

i ∈ N L
A .20

19Of course, if the number of agents in each group NA and NB is even, then each agent agent takes on
the burden of full-intensity investments for exactly half of the agents from the different-type group.

20Given the partitions of groups of people into subgroups according to Observation 1, conditions (1)
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We will use several examples (Example 1–Example 3) to illustrate our main results on
stability.

Example 1. —A Maximally Homophilic Network.

Consider a population N = {1, . . . , 7} such that NA = {1, 2, 3, 4} and NB = {5, 6, 7}.
Notice then that α(nA) = α(4) = 2 and α(nB) = α(3) = 1. Therefore, Assumption 3
imposes a capacity constraint to the agents such that Rm ∈ {5}—i.e., we are restricted
to considering just one possible value R1=5 for the total resource. Hence, each agent
will be able to invest with full intensity in five other agents in the society. Regarding the
bound on the level of assortative interests identified by Corollary 1, note that βL(1) = 1/3.
In addition, we have that 2nB/n + (nB − 3) = 6/7 < 1 = m. Thus, it follows from the
implications of Lemma 3 that a maximally homophilic network will satisfy inbreeding
heterophily for the smaller group NB.

Following Observation 1, consider that the group NA is divided into two subgroups,
N L

A = {1, 2} and NH
A = {3, 4}. Similarly, the group NB is separated into two subgroups,

N L
B = {5} and NH

B = {6, 7}. Let us consider a maximally homophilic network where each
agent from group NA makes full-intensity investments in each of the other three agents in
her same subgroup, whereas each agent from group NB makes full-intensity investments
in each of the other two agents in her same subgroup. In addition, using the description
provided by Corollary 2, consider that each agent from the subgroup N L

A = {1, 2} makes
a full-intensity investment in the (unique) agent from the group N L

B = {5}, whereas each
agent from the subgroup NH

A = {3, 4} makes full-intensity investments in each agent from
the subgroup NH

B = {6, 7}. On the other hand, consider that agent 5 (the unique member
of the subgroup N L

B ) makes full-intensity investments in each agent from the subgroup
NH

A = {3, 4}, while each agent from the subgroup NH
B = {6, 7} makes full-intensity

investments into each agent from the subgroup N L
A = {1, 2}. Given the description of

the profile thus far, it can be easily verified that, for each of the twelve possible pairs
(i, j) ∈ Nθ × Nθ ′ of different-type agents, we have that one agent, either i ∈ Nθ or j ∈ Nθ ′,
invests with full intensity in the other agent. Thus, as required by Lemma 2, for each of
the 7 × 6 = 42 possible pairs of agents in the society, at least one of the two agents makes
a full-intensity investment in the other agent. Therefore, no pair of agents have incentives
to deviate, complying with condition 2. of Definition 1.

Given the description provided thus far, notice that while agents 3 and 4 are exhausting
their 5 units of resource, the rest of agents in the society are only investing 4 units of
the resource. Therefore, agents in the subgroups N L

A , N L
B , and NH

B still wish to allocate
their remaining 1 unit in further friendship connections. To complete the description of a
strategy profile for this example, let us consider then that (i) each agent i ∈ N L

A = {1, 2}
invests 1/2 units in each agent j ∈ NH

B = {6, 7}, (ii) agent 5 invests 1/2 units in each

and (2) of Corollary 2 above lead to that each agent i ∈ Nθ must invest with full intensity in links to either
(nθ − 1)+α(nθ′) or (nθ − 1)+ [nθ′ −α(nθ′)] other agents in the population, depending on whether i ∈ NL

θ or
i ∈ NH

θ . This captures a relatively uniform distribution of efforts by the agents to contribute the formation
of links between connecting the two different subgroups.
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agent i ∈ N L
A = {1, 2}, and (iii) each agent j ∈ NH

B = {6, 7} invests 1/2 units in each
agent i ∈ NH

A = {3, 4}. This gives us a possible way to consider a uniform distribution
of investments across different-type agents. As a result, each link between each pair of
agents (i, j) ∈ NA × NB features quality gi j = 3/4. For this (now completely described)
strategy profile x, we can derive the ratio di(x)/si(x) for each agent i ∈ N as follows:

di/si = (1 + 5/4)/3 = 3/4 for i ∈ N L
A ; di/si = (1 + 1)/3 = 2/3 for i ∈ NH

A ;
d j/s j = (3/2 + 1)/2 = 5/4 for j ∈ N L

B ; d j/s j = (3/2 + 3/2)/2 = 3/2 for j ∈ NH
B .

Therefore, for values of the level of assortative interests β ∈ (0, 2/3] all agents behave
individually as described by the solution [a] in Fig. 1. We can thus guarantee that the
proposed strategy profile, which induces a maximally homophilic network, is immune
both against unilateral and bilateral deviations. Indeed, for the particulars of this example,
notice the condition on assortative interests stated in Corollary 2 requires that

β ≤
Rm + (nB − nA)

2(nA − 1)
=

5 + (3 − 4)
2(4 − 1)

=
2
3
.

Now, with regard to extreme forms of heterophilic patterns, Proposition 2 provides
conditions that characterize when minimally homophilic networks arise as stable ones.
Given a strategy profile x ∈ X , the following lower bound

β̃(x) ≡ sup
i∈Nθ, θ∈Θ

2nθ ′
(Rm − nθ ′) +

∑
j∈N i

θ
x ji

on the level of assortative interests of the population will be useful to grasp how assortative
interests lead to maximally homophilic networks.21

Proposition 2. Assume Assumption 1—Assumption 3, and consider a preference specifi-
cation u. Let x a strategy profile that induces a minimally homophilic friendship network
g = g(x). Then, the network g is stable, i.e., g ∈ S(u), if and only if:

1. Robustness against unilateral deviations: the level of assortative interests of the
population described by β is sufficiently low, with the particular form given by β ≥ β̃(x).

2. Robustness against bilateral deviations: provided that the resource Rm is sufficiently
large, with the particular form given by Rm ≥ nA + (nB − 1)/2, then for each pair of
agents from a common group, i, j ∈ Nθ , with i , j, for each type θ ∈ Θ, we have
j < Ni(x) ⇒ i ∈ Nj(x).

Condition 1. of Proposition 2 ensures that no agent has unilateral incentives to deviate
from investing with full intensity in links to each different-type individual. The condition

21Recall that, in order to derive a lower bound on the level of assortative interests, we need to an upper
bound on the slope β.
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makes use of the bounds β(θ; x−i) (for each agent i ∈ Nθ and each type θ ∈ Θ) that
guarantee a unilateral optimal choice as the one described by [c] in Fig. 1.

In addition, contingent on the size of the resource Rm being sufficiently large, condition
2. of Proposition 2 guarantees that no pair of agents have bilateral incentives to (jointly)
deviate from profiles that induce minimally homophilic networks.

Note that the conditions described by the proposition yet allow for a quite broad class
of networks to be stable. A converse insight to the one provided by Proposition 1 follows
from Proposition 2. Provided that the resource Rm is relatively large, even in the presence
of low assortative interests, extreme forms of heterophilic patterns can be sustained as
stable ones only if same-type agents i, j build connections among them whose linkage
qualities gi j be no less than 1/2. A certain degree of quality of the homophilic relations
is necessary to sustain minimally homophilic stable networks.

In a way totally analogous to our investigation of maximally homophilic networks,
Corollary 3 provides a bound on the level of assortative interests that guarantees the
existence of only minimally homophilic networks.

Corollary 3. Assume Assumption 1—Assumption 3, and consider a preference specifi-
cation u. Let x be a strategy profile that induces a friendship network g = g(x). Provided
that Rm ≥ nA + (nB − 1)/2, suppose that x satisfies that for each pair of agents from
different groups, i ∈ NA and j ∈ NB, we have j < Ni(x) ⇒ i ∈ Nj(x). Then, if the level of
assortative interests in the population is sufficiently low, with the particular form given by
β > βH(m), where βH(m)22 is the bound on β specified in Eq. (3), then the unique class
of stable networks consists entirely of minimally homophilic netwoks.

The sufficient condition stated in Corollary 3 follows directly by considering a bound
βH(m) on the cutoff values β̃(x) such that, if β > βH(m), then: (a) no partially homophilic
network can be sustained as stable, and (b) each agent would strictly prefer to invest with
full intensity in all different-type agents, as captured by [c] of Fig. 1. Upon considering
an agent i ∈ Nθ who does not invest with full intensity in each different-type agent, such
a bound βH(m) can be derived by noting that β(θ; x−i) cannot be (strictly) higher than
2nθ ′/[Rm − nθ ′], which would correspond to a (hypothetical) situation where

∑
j∈Nθ ′

x ji =

nθ ′ and
∑

j∈N i
θ

x ji = 0 (that is, agent i would receive no investments whatsoever from
the same-type agents and full investments from all different-type agents). Then, if β >
2nθ ′/[Rm − nθ ′], it follows that even such an agent, who would be in the best position to
behave unilaterally either as [a] or [b] of Fig. 1, would rather choose to invest in all other
same-type agents instead, as captured by [c] of Fig. 1.

Corollary 4 provides conditions that ensure the existence of stable minimally ho-
mophilic networks where the distribution of full-intensity investments across agents is

22The magnitude of the bound βH (m) considered in Corollary 3 decreases with the size Rm of the
available resource in the interval βH (m) ∈

[
2nA/(nB − 2), 2nA

]
.
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relatively uniform, conditional on their characteristics. It will be useful to set the (type-
dependent) integer lθ ≡ max{nθ − nθ ′, 0}.

Corollary 4. Assume Assumption 1—Assumption 3, and consider a preference specifi-
cation u. Then, provided that the total resource Rm available to the agents is sufficiently
large, under the particular requirement that m ∈ {α(nB), . . . , nB − 2}, if the level of assor-
tative interests β satisfies β ≥ βl(m), where βl(m) is the bound on β specified in Eq. (3),
then there exists a class of strategy profiles x ∈ X , invariant to any relabelling of the names
of the agents, which induces minimally homophilic stable networks g = g(x).

In particular, such a class of strategy profiles x can be constructed as follows: for each
type θ ∈ Θ, (1) upon relabelling the names of the agents in Nθ , set Nθ ≡ {i1, i2, . . . , inθ },
(2) for each agent ik ∈ Nθ , let then Ni1(x) = Nθ ′ ∪ {i2, . . . , i1+(m+lθ )}, Ni2(x) = Nθ ′ ∪

{i3, . . . , i2+(m+lθ )}, and so on iteratively, until reaching Ninθ (x) = Nθ ′ ∪ {i1, . . . , im+lθ }.23

Notice that any profile from the class described inCorollary 4 satisfies the key condition
(required by Lemma 2) that j < Ni(x) must imply i ∈ Nj(x), for each pair of different
agents i, j ∈ N—in order to prevent profitable bilateral deviations. Also, the proposed
family of profiles entails that each agent i ∈ NA invests with full intensity in each of the
nB different-type agents and in m + (nA − nB) same-type agents—since, in this case, we
have lA = max{nA − nB, 0} = nA − nB. On the other hand, each agent i ∈ NB invests with
full intensity in each of the nA different-type agents and in m same-type agents—since
lB = max{nB − nA, 0} = 0. For the proposed class of profiles, since the available resource
Rm is common to the agents, it follows that the agents who belong to the largest group can
spare more of their resource to fully invest in same-type agents after investing (with full
intensity) in all different-type agents. Notice that we are proposing a construction for the
required minimal set of full-intensity investments where the burden of investments across
same-type agents is distributed uniformly.

Example 2. —A Minimally Homophilic Network.

Exactly as in Example 1, consider a population N = {1, . . . , 7} such that NA =

{1, 2, 3, 4} and NB = {5, 6, 7}. Recall that α(nA) = α(4) = 2 and α(nB) = α(3) = 1, and
that Assumption 3 imposes a capacity constraint to the agents such that R1 = 5. As in
Example 1, each agent will be able to invest with full intensity in five other agents in
the society. Recall also that the bound on the level of assortative interests identified by
Corollary 1 equals βL(1) = 1/3. Regarding the bound on the level of assortative interests
identified by Corollary 3, note that βH(1) = 8.

23To appreciate better the set of agents who receive full investments by each agent of each subgroup in
the corollary, it is useful to consider that the agents from each set Nθ ≡ {i1, i2, . . . , inθ } are arranged in a
circular fashion. Then each agent ik invests with full intensity in each of the following ik+1, . . . , ik+(m+lθ )
agents. We continue in this way until each of the last agents from list {i1, i2, . . . , inθ } invests fully in the
subsequent agents and also in the first agents from the list—thus, after completing the circumference—until
completing full investments in m + lθ agents.
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Note first that lA = 1 and lB = 0. Then, using the construction proposed by Corollary 4,
we can consider a strategy profile x such that: N1(x) = NB ∪ {2, 3}, N2(x) = NB ∪ {3, 4},
N3(x) = NB ∪ {4, 1}, N4(x) = NB ∪ {1, 2}, N5(x) = NA ∪ {6}, N6(x) = NA ∪ {7}, and
N7(x) = NA ∪ {5}. Given this description of the profile, it can be easily verified that, for
each of the twelve possible pairs (i, j) ∈ NA×NA, i , j, exactly one agent invests with full
intensity in the other agent. Similarly, for each of the six possible pairs (i, j) ∈ NB × NB,
i , j, exactly one agent invests with full intensity in the other agent. As required by
Lemma 2, for each of the 7 × 6 = 42 possible pairs of agents in the society, at least one of
the two agents makes a full-intensity investment in the other agent. Therefore, no pair of
agents have incentives to deviate, complying with condition 2. of Definition 1. Under the
description provided, note that all agents in the society are using exactly their 5 units of
resource. In this way, we consider a uniform distribution of investments across same-type
agents. As a result each link between each pair of different agents (i, j) ∈ Nθ × Nθ from a
common subgroup Nθ features quality gi j = 1/2. Now, we can derive the ratio di(x)/si(x)
for each agent i ∈ N as follows: for each agent i ∈ NA, we have di/si = 3/2, whereas for
each agent j ∈ NB, we have d j/s j = 4/1. For values of the level of assortative interests
β ≥ 4, we can guarantee that each agent behaves individually as described by solution
[c] in Fig. 1. Thus, the proposed strategy profile, which induces a minimally homophilic
network, is immune both against unilateral and bilateral deviations. For the particulars
of this example, the condition on assortative interests stated in Corollary 4 requires that
β ≥ βl(m) = nA/m = 4/1 = 4, for nA = 4 and m = 1.

The results provided by Proposition 3 are quite useful to complement our picture of
stable friendship networks. If dissasortative interests are predominant (perhaps due to
that agents value more plausible complementaries arising from diversity), then maximally
homophilic networks are not stable. Conversely, societies where assortative interests
dominate do not feature stable minimally homophilic networks.

Proposition 3. Assume Assumption 1—Assumption 3, and consider a preference speci-
fication u. Then,

(i) if the interests for making friends β of the society lean towards disassortativity, with
the particular form β ∈ (1,+∞), then there is no stable maximally homophilic network;

(ii) if the interests for making friends β of the society lean towards assortativity, with
the particular form β ∈ (0, 1], then there is no stable minimally homophilic network.

Intuitively, under the presence of capacity constraints, (i) if the level of assortative
interests is low—so that agents value marginal investments in different-type agents more
than in same-type individuals—, then agents choose not to devote the scarce resource to
invest with full intensity in all other same-type agents. When group sizes are asymmetric,
members of the larger group will be relatively more constrained in this respect because
they are required to invest in a relatively higher number of agents under the description
of a maximally homophilic network. Similarly, (ii) if the level of assortative interests is
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high, then agents prefer not to devote the scarce resource to invest with full intensity in all
other different-type agents. Members of the smaller group will in this case be relatively
more constrained in this respect.

Finally, the insights of Corollary 5 allow us to give a full description of stable friendship
networks. In particular, with a flavor similar to that of the results in Corollary 1 and
Corollary 3, Corollary 5 provides an interval for the level of assortative interests that
guarantees the existence of only partially homophilic networks.

Corollary 5. Assume Assumption 1—Assumption 3, and consider a preference specifi-
cation u. Let x be a strategy profile that induces a friendship network g = g(x). Suppose
that x satisfies that for each pair of agents from different groups, i ∈ NA and j ∈ NB, we
have j < Ni(x) ⇒ i ∈ Nj(x). Then, if the level of assortative interests in the population
β is intermediate, with the particular form given by βl(m) < β < βh(m), then the unique
class of stable networks consists entirely of partially homophilic netwoks.

3.5 Main Takeaways on Stable Patterns

At this point, we can combine the results of Proposition 1—Proposition 3 and those of
Corollary 1—Corollary 5 to establish the key bounds that describe how homophily levels
in stable networks depend on the level of assortative interests in the society. Our analysis
has shown that:

1. for values β ∈ (0, βL(m)), only maximally homophilic networks are stable;

2. for values β ∈ [βL(m), βl(m)], both maximally homophilic and partially homophilic
networks may be stable;

3. for values β ∈ (βl(m), βh(m)), only partially homophilic networks may be stable;

4. for values β ∈ [βh(m), βH(m)], both minimally homophilic are stable and partially
homophilic networks may be stable;

5. for values β ∈ (βH(m),+∞), only minimally homophilic are stable.

We can now be specific about when existence and uniqueness of classes of stable
networks can be guaranteed in our setting. Corollary 2 showed that if the level of assortative
interests is relatively high, with the particular form β ≤ [Rm+(nB−nA)]/2(nA−1), then there
exists a strategy profile x that induces a class of stable maximally homophilic networks
g = g(x). Since βL(m) can be written as [Rm + (1 − nA)]/2(nA − 1), it can be directly
noted that βL(m) < [Rm + (nB − nA)]/2(nA − 1) in our setting. Therefore, existence of
stable patterns are guaranteed for assortative interests β ≤ βL(m). In addition, Corollary 4
granted that if the level of assortative interests is relatively low, with the particular form
β ≥ βh(m), then there exists a strategy profile x that induces a class of stable minimally
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homophilic networks g = g(x). The implications on existence and uniqueness follow
them by combining the implications of Corollary 1 and Corollary 2 (on the side of
extreme homophilic patters), and of and Corollary 3 and Corollary 4 (on the side of
extreme heterophilic patterns).

Using the details of Example 1 and Example 2, recall that the bounds on the level
of assortative interests captured by Corollary 1, Corollary 3, and Corollary 5 take the
respective values βL(1) = 1/3, βH(1) = 8, βl(1) = 17/24, and βh(1) = 4. Therefore, for
those exampleswe know that onlymaximally homophilic networks are stable for values β ∈
(0, 1/3), whereas only minimally homophilic networks are stable for values β ∈ (8,+∞).
Only partially homophilic networks are stable for β ∈ (17/24, 4). Also, both maximally
homophilic and partially networks coexist as stable ones for values β ∈ [1/3, 17/24],
whereas both minimally homophilic and partially homophilic networks coexist as stable
ones for β ∈ [4, 8]. In particular, recall that we have described a maximally homophilic
network for assortative levels β ∈ (0, 2/3] (Example 1), and a minimally homophilic
network for β ∈ [4,+∞) (Example 2).

Our results convey the natural message that resulting homophily levels in friendship
networks are positively relatedwith the assortative interests of the individuals in the society.
However, our insights on (potentially) beneficial bilateral deviations (Lemma 2)—via the
premium of mutual efforts—also show that links between each pair of agents with different
characteristics must also be sponsored by (at least) one of the two friends in order to sustain
extreme forms of homophilic patterns. Thismessage that homophily does not arise in away
fully isolated (from heterophilic links of a certain quality) is also consistent with our results
that, for assortative levels β ∈ [βL(m), βl(m)], maximally homophilic networks coexist
with partially homophilic ones. Such messages also extend to our investigation of extreme
forms of stable heterophilic patterns. We observe that strong forms of heterophilic patterns
cannot arise unless certain quality levels of homophilic connections are also present. In
consonance with that message, note also that, for assortative levels β ∈ [βh(m), βH(m)],
both minimally and partially homophilic networks coexist. Finally, note that our model
delivers the insight that extreme forms of homophilic and heterophilic patterns cannot
coexist simultaneously under a common level of assortative interests.

Since βL(m) increases in m (i.e., in Rm) and βH(m) decreases in m (i.e., in Rm), it
follows that the set of assortative levels [βL(m), βH(m)], under which partially homophilic
networks are stable, increases—according to the set inclusion order—as the capacity
constraints tighten—i.e., as the resource Rm decreases. Thus, the message is that stable
patterns where only any of the two extreme forms of homophily connections are present
(either maximally or minimally homophilic networks) become less likely when the agents
are more constrained in their resource to form links. In addition, we observe that βl(m)
increases in m (i.e., in Rm) and βh(m) decreases in m (i.e., in Rm). Therefore, the
set (βl(m), βh(m)) also increases—according to the set inclusion order—as the capacity
constraints tighten. In short, tighter capacity constraints expands the set of assortative
levels under which only partially homophilic patterns are stable.
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As to the role played by the relative sizes of the two population groups, NA and NB,
notice first that if nA = nB, then βl(m) = 2βL(m) and βl(m) increases as the difference
nA − nB of the two population sizes rises. Therefore, it is harder for populations with
high discrepancies between their group sizes to sustain maximally homophilic networks
as stable ones, compared to societies that feature similar sizes for their groups. Notably,
this insight is quite consistent with some results of the empirical analysis conducted by
Currarini et al. (2009). Using measures the inbreeding homophily and data from Add
Health (1994) for an American high school, their analysis highlights that relatively large
groups, such as white and black students, tend to form friendship relations with others
of their same characteristic. On the other hand, when much smaller groups are present,
such as Hispanic students, they link more with students of different characteristics. These
observations do not fit our notion of maximally homophilic networks because it requires
that members of each different group link extensively among them, creating independent
communities. In their data, it is precisely the presence of large discrepancies between
group sizes what causes connections to fail to give extreme homophily patterns in the
entire student population. This empirically obtained message goes in the same direction
as our results on stability of maximally homophilic patterns when groups are very different
in their sizes. Finally, from the expression of βH(m) = 2βh(m), we directly observe that
the bounds that allow for extreme forms of heterophilic patterns to stable ones are not
restricted in any way by plausible discrepancies between the sizes of the groups with
different characteristics.

We turn now to explore a particular class of partially homophilic networks that can be
stable for “intermediate” assortative levels β ∈ [βL(m), βH(m)].

3.6 A Class of Partially Homophilic Networks

An interesting special case of partially homophilic networks is that in which all agents
behave unilaterally as described by the interior solution [b] in Lemma 1 (i.e., the solution
[b] depicted in Fig. 1). In such networks no agent invests with full intensity neither in all
their same-type fellows nor in all the different-type agents. In general, though, it turns out
difficult to guarantee the existence of such partially homophilic networks as stable ones.
Certain symmetry properties in the primitives of the model are needed. For the particular
case where both population groups have a common even size, we provide a method, in
Observation 2 below, to construct a family of strategy profiles that induce stable partially
homophilic networks with the above mentioned feature. In addition, our proposal seeks
to distribute as uniformly as possible the burden of full-intensity investments across the
agents in the population.

Observation 2. We restrict attention to those populations such that nA = nB = n/2
for n/2 even. Upon relabelling the names of the agents in the population, let us set
NA ≡ {i1, i2, . . . inA} and NB ≡ { j1, j2, . . . jnB }. Consider that the agents from each of
the two lists {i1, i2, . . . inA} and { j1, j2, . . . jnB } are arranged in a circular fashion. In
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addition, exactly as proposed in Observation 1, let us consider a partition of each of the
two population groups Nθ , for θ ∈ Θ, into two sets, N L

θ and NH
θ , according to: (a) NA is

partitioned into N L
A = {i1, . . . , iα(nA)} and NH

A = {iα(nA) + 1, . . . , inA}, whereas (b) NB is
partitioned into N L

B = { j1, . . . , jα(nB)} and NH
B = { jα(nB) + 1, . . . , jnB }.

Given those ingredients, the suggested method consists of two steps. In the first step,
we describe the minimal set of full-intensity investments which guarantees that no pair
of agents have bilateral incentives to deviate (as required by Lemma 2). Given this,
the second step describes how agents invest in the remaining agents. In some cases,
particular investment profiles could entail that some agents invest with full intensity in
other agents, beyond the requirements of the first step. The underlying logic, however,
is that the investments captured by the second step seek to adjust the required remaining
investments so that each agent ultimately exhaust her available resource while, at the same
time, the induced profile is such that each agent behaves unilaterally as the solution [b] in
Lemma 1. In general, the investments that follow from our second step will be lower than
full-intensity investments.

First Step.— In regard to same-type fellows, consider that, for each type θ ∈ Θ, each agent
i ∈ Nθ invests with full intensity in the subsequent α(nθ) agents from the same-type list
following the suggested circular arrangement. As to how agents invest with full intensity
in different-type agents, consider that (a) each agent i ∈ N L

A invests xi j = 1 in each agent
j ∈ N L

B ; (b) each agent i ∈ NH
A invests xi j = 1 in each agent j ∈ NH

B ; (c) each agent j ∈ N L
B

invests with full intensity x ji = 1 in each agent i ∈ NH
A , and (d) each agent j ∈ NH

B invests
with full intensity x ji = 1 in each agent i ∈ N L

A .

Notice that, in this first step, we are not giving any details about non full-intensity
investments to propose our class of strategies. Observe, though, that the above description
already guarantees the condition required by Lemma 2 to prevent profitable bilateral
deviations from the profile x. In particular, all agents invest with full intensity in α(nA) +

α(nB) = α(n) other agents. Then, the described full-intensity investments in the subsequent
α(nθ) same-type agents (along the circular arrangement) ensure that, for each pair of
same-type agents, at least one of them is investing with full intensity in the other agent. In
addition, the crossed-investments among different type-agents suggested simply replicate
the description proposed in Observation 1 to guarantee the robustness against bilateral
deviations of the class of profiles described in Corollary 2. Corollary 2 showed that such
cross-investments involving the four population subgroups ensured that, for each pair of
different-type agents, at least one of them invests with fully intensity into the other.

Although we still need to describe a way to propose the pending investments so that
each agent exhausts her resource, note that our description thus far entails that each agent
behaves unilaterally as described by the interior solution [b] in Fig. 1. Let N̂i(x) be the
minimal set of full-investments of agent i constructed as suggested above. In general,
we have N̂i(x) ⊆ Ni(x), though it could be the case that such an inclusion relationship
ultimately holds strictly in some particular cases.
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Second Step.—Let us reconsider the condition over total qualities di/si = β, which is
required for agent i to makes an optimal (unilateral) investment choice as the one described
by [b] in Fig. 1. Given our description of the first step, such a condition can be rewritten
as

|N̂i(x) ∩ Nθ ′ | + |{ j ∈ Nθ ′ | i ∈ N̂j(x)}| +
∑

j∈Nθ ′\N̂i(x) xi j +
∑
{ j∈Nθ ′ | i<N̂j (x)} x ji

|N̂i(x) ∩ N i
θ | + |{ j ∈ N i

θ | i ∈ N̂j(x)}| +
∑

j∈N i
θ\N̂i(x) xi j +

∑
{ j∈N i

θ | i<N̂j (x)} x ji
= β. (6)

In addition to the requirements in Eq. (6), we must also ensure that, for each agent i ∈ N ,
we have ∑

j<N̂i(x)

xi j = Rm − |N̂i(x)| (7)

so that all agents are able to exhaust the available resource.

Notice that the method suggested in Observation 2 does not provide a closed algorithm
of general applicability. However, it gives us a plausible strategy to tackle the problem
of proposing particular partially homophilic networks. All the above ingredients of our
method in Observation 2 to construct partially homophilic networks are illustrated in
Example 3.

Example 3. —A Partially Homophilic Network. Consider a population consisting of eight
agents such that half of them have one characteristic or the other. Let us simply index such
a population as N = {1, 2, 3, 4} ∪ {5, 6, 7, 8}, with NA = {1, 2, 3, 4} and NB = {5, 6, 7, 8}.
In this case, we can have two possible values for the available resource Rm ∈ {5, 6}, i.e.,
m ∈ {1, 2}. Let us then consider a total resource R1 = 5 for this example. Also, notice we
have α(n) = α(8) = 8/2 = 4, and α(nA) = α(nB) = α(4) = 4/2 = 2.

By resorting to the partitions of each population group described in the first step of
Observation 2, consider that the group NA is divided into two subgroups, N L

A = {1, 2} and
NH

A = {3, 4}. Similarly, the group NB is separated into two subgroups, N L
B = {5, 6} and

NH
B = {7, 8}. Then, the class of investment profiles described in Observation 2 requires

that we set N̂1(x) = {2, 3}∪{5, 6}, N̂2(x) = {3, 4}∪{5, 6}, N̂3(x) = {4, 1}∪{7, 8}, N̂4(x) =
{1, 2} ∪ {7, 8}, N̂5(x) = {6, 7} ∪ {3, 4}, N̂6(x) = {7, 8} ∪ {3, 4}, N̂7(x) = {8, 5} ∪ {1, 2},
and N̂8(x) = {5, 6}∪{1, 2}. Notice that, up to here, no agent is investing with full intensity
neither in all of the remaining same-type agents, nor in all of the different-type agents,
as required in the class of partially homophilic networks that we are considering. Now,
using the condition in Eq. (6) of the second step of Observation 2 for a level of assortative
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interest β, we need to consider

β =
4 + x17 + x18 + x51 + x61

4 + x14 + x21
=

4 + x27 + x28 + x52 + x62

4 + x21 + x32

=
4 + x35 + x36 + x73 + x83

4 + x32 + x43
=

4 + x45 + x46 + x74 + x84

4 + x43 + x14

=
4 + x51 + x52 + x35 + x45

4 + x58 + x65
=

4 + x61 + x62 + x36 + x46

4 + x65 + x76

=
4 + x73 + x74 + x17 + x27

4 + x76 + x87
=

4 + x83 + x84 + x18 + x28

4 + x87 + x58
.

In addition, Eq. (7) requires that we add the constraints

x14 + x17 + x18 = 1, x21 + x27 + x28 = 1, x32 + x35 + x36 = 1, x43 + x45 + x46 = 1,
x58 + x51 + x52 = 1, x65 + x61 + x62 = 1, x76 + x73 + x74 = 1, x87 + x83 + x84 = 1.

Notice that the bounds for the level of assortative interests identified in Corollary 1
and Corollary 3 take the values βL(1) = 1/3 and βH(1) = 8 in this example. We must
then propose values of the level of assortative interests β ∈ [βL(1), βH(1)] = [1/3, 8] to
ensure that the so derived network g = g(x) is robust against unilateral deviations. Given
this, for the particular value β = 8/7, we can then propose symmetric non full-intensity
investments so that for each agent i ∈ N , we have xi j = 1/3 for each j < N̂i(x).

4 Efficiency of Friendship Networks

Our analysis of efficiency properties relies on a classical utilitarian approach where the
social planner gives all agents the same importance, regardless of their identities and
characteristics.24 In particular, we assume that the (social) value of friendship networks is
described by a function v : G→ R+, specified as

v(g(x)) ≡
∑
i∈N

πi(g(x)). (8)

The notion of efficiency that we use follows closely Jackson andWolinsky (1996) who
consider that a social network is efficient if it yields the highest possible social value. In
addition, we naturally require the social planner to face the same capacity constraints that
restrict the agents’ choices. Formally,

24Utilitarian approaches have been commonly pursued in literature that explores the relationship between
stable and efficient networks. See, among others, Jackson and Wolinsky (1996), Calvó-Armengol (2003),
Goyal and Vega-Redondo (2007), Bloch and Jackson (2007), and, Bloch and Dutta (2009).
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Definition 5. A friendship network ĝ = g(x̂) induced by an investment profile x̂ is efficient
if, conditional on considering investment profiles that satisfy the capacity constraints, the
investment profile x̂ maximizes the sum of the utilities of all the agents in the population,
that is, if v(ĝ(x̂)) ≥ v(g(x)) for x̂ ∈ X and for each x ∈ X .

In regard to the value function considered in Eq. (8), recall that we are considering
that individual preferences πi(g(x)) have the form πi(g(x)) = u(si(x), di(x)), for a fairly
general utility function u(si, di) that satisfies Assumption 2. Given that our assumptions
on preferences depend on the shape of the utility function u, we find it convenient to work
with the efficiency notion in terms of the variables si and di. In addition, since the social
planner seeks to maximize the sum of the agents’ utilities, we can restrict attention to the
class of friendship networks the all agents exhaust the available resource Rm.

Proposition 4 shows that any efficient pattern must necessarily have common resulting
qualities of both same-type and different-type friendship links across all individuals within
each of the two population groups. The key insight provided by Proposition 4 exploits the
assumptions that preferences are common across agents and that they are (strictly) convex
in the (si, di) space (Assumption 2–(3)). Using such assumptions, the logic of the result in
Proposition 4 relies on the implication that for each feasible investment profile x ∈ X , we
can find another feasible profile x̂ ∈ X—which can be related to x in a precise way—such
that: (i) the same-type si(x̂) and different-type di(x̂) qualities are constant across all agents
within each population group NA and NB, and (ii) the social value derived from x̂ is no
less than the one derived from x. Importantly, it also follows that v(g(x̂)) > v(g(x)) unless
the profile x features also common qualities si(x) and di(x) across all agents within each
population group.

Proposition 4. Assume Assumption 2 and Assumption 3, and consider a preference
specification u. Let x̂ be an investment profile that induces an efficient network ĝ = g(x̂).
Then, the total qualities (si(x̂), di(x̂))must be common across all agents in each of the two
population groups, that is, si(x̂) = sθ(x̂) and di(x̂) = dθ(x̂) for each agent i ∈ Nθ and each
type θ ∈ Θ.

The above implication simplifies greatly our problem of finding investment profiles
associated to efficient networks. Proposition 4 enables us to restrict attention to a particular
family of investment profiles x̂ that are the only candidates to induce an efficient network.
Heuristically, as can be noted from the proof of Proposition 4, a profile x̂ that can
possibly induce an efficient network is characterized by the following proposal of aggregate
investments. For each agent i ∈ Nθ and each type θ ∈ Θ, let

(a)
∑

j∈N i
θ

xi j =
∑

j∈N i
θ

x ji = yθθ , and

(b)
∑

j∈Nθ ′
xi j = yθθ ′ and

∑
j∈Nθ ′

x ji = zθθ ′.

The family of suggested profiles x̂ specified above is the unique family able to induce
qualities (si(x̂), di(x̂)) that be constant across all agents within each population group. It
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follows that si(x̂) = yθθ and di(x̂) = (1/2)[yθθ ′ + zθθ ′] for each i ∈ Nθ and each θ ∈ Θ. For
such a family of profiles, we must consider the capacity constraints imposed on the agents
(Assumption 3) with equality, so that yθθ + yθθ ′ = Rm for each type θ ∈ Θ and for the type
θ′ , θ. Finally, as also indicated in the proof of Proposition 4, such aggregate investments
must also satisfy nAzAB = nByBA and, similarly, nBzBA = nAyAB.25 By putting together all
the considerations above, we are left with a tractable description of the problem that faces
the social planner. In particular, such a problem is that of choosing profiles x̂ in order to
maximize the expression

v(g(x̂)) =nAu
(
yAA, (1/2nA)(nRm − nAyAA − nByBB)

)
+ nBu

(
yBB, (1/2nB)(nRm − nAyAA − nByBB)

) (9)

for the value function.

In short, we can analyze the investment profiles x̂ that satisfy the necessary condi-
tion provided by Proposition 4—required to induce efficient networks—in terms of the
aggregate outgoing/incoming investments yθθ =

∑
j∈N i

θ
xi j =

∑
j∈N i

θ
x ji within each pop-

ulation group. In turn, such aggregate investments yield also the associated aggregate
outgoing/incoming investments between the two different population groups:

yθθ ′ =
∑

j∈Nθ ′
xi j = Rm − yθθ and

zθθ ′ =
∑

j∈Nθ ′
x ji = (nθ ′/nθ)[Rm − yθ ′θ ′]

Given all the ingredients above, we derive sufficient conditions, in Proposition 5, that
characterize unique classes of investment profiles that induce efficient networks. Each
class is described by the above mentioned aggregate outgoing/incoming investments yθθ ,
for each θ ∈ Θ. Nevertheless, note that each class includes multiple profiles x̂ because
the derived conditions do not depend on the particular investments x̂i j from each agent i
to another agent j in her same population group. The expression derived in Eq. (9) is key
to derive the sufficient conditions provided by Proposition 5.

Proposition 5. Assume Assumption 2 and Assumption 3, and consider a preference
specification u. Let x̂ be an investment strategy profile that satisfies the necessary condition
given by Proposition 4. Then,

(i) if the level of assortative interests in the population is sufficiently high, with the
particular form given by β < βl(m), then the investment profile x̂ that induces a unique

25This is obtained by equalizing the aggregate investments that all agents from a group Nθ make in all
agents from the other group Nθ′ to the aggregate investments that the agents from Nθ′ receive from all agents
from Nθ
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class of efficient networks g = g(x̂) satisfies

for i ∈ Nθ,
∑
j∈N i

θ

xi j =
∑
j∈N i

θ

x ji = nθ − 1,
∑

j∈Nθ ′

xi j = Rm − (nθ − 1), and

for i ∈ NA,
∑
j∈NB

x ji = (nB/nA)[(m + 1) + (nA − nB)];

for i ∈ NB,
∑
j∈NA

x ji = (nA/nB)(m + 1).

(ii) if the level of assortative interests in the population is sufficiently low, with the
particular form given by β > βh(m), then the investment profile x̂ that induces a unique
class of efficient networks g = g(x̂) satisfies, for each i ∈ Nθ and each θ ∈ Θ,

∑
j∈N i

θ
xi j =∑

j∈N i
θ

x ji = Rm − nθ ′,
∑

j∈Nθ ′
xi j = nθ ′, and

∑
j∈Nθ ′

x ji = nθ ′.

Notice that the class of investment profiles x̂ identified in (i) of Proposition 5 correspond
to maximally homophilic networks, whereas the ones identified in (ii) of Proposition 5
correspond tominimally homophilic networks. For all agents i ∈ Nθ , the profiles identified
in (i) give us common qualities

si(x̂) = nθ − 1 and di(x̂) =
n(m + 1) + nB(nA − nB)

2nθ
.

Similarly, the profiles identified in (ii) deliver common qualities si(x̂) = Rm − nθ ′ and
di(x̂) = nθ ′ for all i ∈ Nθ . We observe from our definitions of extreme forms of homophily
patterns (Definition 2), that only maximally homophilic networks are efficient for assor-
tative levels β < βl(m), whereas only minimally homophilic networks are efficient for
values β > βh(m).

A few insights emerge from Proposition 4 and Proposition 5. We observe first a
certain discrepancy between stability and efficiency of partially homophilic networks.
In particular, although partially homophilic networks are stable for assortative interests
β ∈ [βL(m), βl(m)] ∪ [βh(m), βH(m)], such networks are not efficient. Secondly, let us
go back to our main examples and explore the efficiency of the friendship networks there
constructed. Notice that the maximally homophilic network constructed in Example 1
does not satisfy the necessary condition that the resulting aggregate qualities (si, di) be
common across all agents within each population group. In that example, we indeed
derived

di = 9/4 for i ∈ N L
A whereas di = 2 for i ∈ NH

A , and
d j = 5/2 for j ∈ N L

B whereas d j = 3 for j ∈ NH
B .

Thus, such a network is not efficient. Note that the description given in (i) Proposition 5 of
the unique class ofmaximally homophilic efficient networks requires that each agent j from
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the population group NB receives an aggregate investment
∑

j∈NA
x ji = (nA/nB)(m + 1)

from the agents from the population NA. The model’s assumptions imply directly that
(nA/nB)(m + 1) ≥ 2, with strict inequality if nA > nB. Therefore, we obtain the property
that if the population sizes are not equal, then for a maximally homophilic network to be
efficient, at least three agents from the larger group NA must invest a positive amount into
each agent from the smaller group NB. This property is not satisfied in Example 1 since
agent 5 ∈ NB is receiving investments from only two agents from the group NA—i.e.,
those agents in N L

A = {1, 2}.

The inefficiency of the maximally homophilic network of Example 1 highlights a more
general feature of maximally homophilic networks when the population groups differ in
their sizes. Conditional on the agents of each group having invested with full intensity
in all their same-type fellows, then stability requires that at least one agent within each
pair of different-type agents invest with full intensity in the other agent. Attaining such
minimum full-intensity investments naturally entails asymmetries in investments between
the two different groups when their sizes are different. Then, when the two groups differ
in their sizes, the efficiency requirement that the aggregate qualities di be common across
all agents from each group become harder to achieve. When the two groups have the same
size, however, there are no asymmetries between the investments between different groups
required to attain stability of amaximally homophilic network. In fact, Observation 3 gives
a method to construct maximally homophilic networks that are simultaneously stable and
efficient, provided that the groups of agents with different characteristics have the same
size.

Observation 3. Consider a situation where nA = nB. Suppose that the level of assortative
interests is sufficiently high, with the particular form β ≤ (m + 1)/(nA − 1) = 2βL(m).

Upon relabelling the names of the agents in the two population groups, let us set
NA ≡ {i1, i2, . . . , inA} and NB ≡ { j1, j2, . . . , jnB }. Consider a class of strategy profiles x
described as follows. For each agent ik ∈ NA, let

Ni1(x) = N i1
A ∪ { j2, . . . , j1+(m+1)},

Ni2(x) = N i2
A ∪ { j3, . . . , j2+(m+1)},

and so on iteratively, until reaching

NinA (x) = N
inA
A ∪ { j1, . . . , j1+m}.

Analogously, for each agent jk ∈ NB, let

Nj1(x) = N j1
B ∪ {i1, . . . , i1+m},

Nj2(x) = N j2
B ∪ {i2, . . . , i1+(m+1)},

and so on iteratively, until reaching

NjnB (x) = N
jnB
B ∪ {inA, . . . , inA+m}.
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Under this proposal, each agent of type θ = A invests with full intensity in exactly
Rm − (nA−1) = m+1 agents of type θ = B. In addition, each agent of type θ = A receives
also Rm − (nA − 1) = m + 1 units from the agents of type θ = B. Notice that the available
resource Rm = nA +m, with m ∈ {α(nA), ..., nB − 2}, is sufficiently large to allow for each
pair of different-type agents to have at least one of them investing with full intensity into
the other agent. In fact, the class of described strategy profiles x satisfies the key condition
in Lemma 2 and, therefore, any induced network g = g(x) is robust to bilateral deviations.
Under the considered condition on the level of assortative interests β ≤ (m+1)/(nA−1), the
networks in the induced class are also robust against unilateral deviations. Furthermore,
we obtain the resulting qualities si(x) = nθ − 1 and di(x) = Rm − (nθ − 1) for each agent
of type i ∈ Nθ , for each type θ ∈ Θ. Any network constructed in this way satisfy the
necessary condition for efficiency required by Proposition 4 that the qualities (si, di) be
constant across all agents within each population group. Finally, notice that, for the
particular case nA = nB, we have that (m + 1)/(nA − 1) = 2βL(m) = βl(m). Therefore, the
class of constructed networks satisfy also the sufficient condition in (i) of Proposition 5,
which ensures efficiency.

For the case of minimally homophilic networks the stability condition that, for each
pair of agents, at least one of them invests fully in the other needs to be satisfied within
each group. This requirement contrasts sharply with what is needed for the case of
maximally homophilic networks. In particular, this requirement entails no asymmetries
in investments within each group, even when the groups differ greatly in their sizes. In
such cases, finding a minimally homophilic network that be simultaneously stable and
efficient is always guaranteed, as detailed in Observation 4. In fact, the class of minimally
homophilic networks constructed in Example 2 satisfies the necessary condition required
by Proposition 4. Furthermore, using the details of this example, we can verify that
βh(1) = 4. Those minimally homophilic networks suggested in the example were stable
for values of the assortative interests β ≥ 4. Thus, the sufficient condition given by
Proposition 5 guarantees that the class of minimally homophilic networks constructed in
Example 2 are efficient. Furthermore, for β > 4, the investment profile used to construct
the network in the example belongs to the unique class of profiles that induce efficient
networks.

Observation 4. Suppose that the level of assortative interests in the population is suffi-
ciently low, with the particular form β ≥ nA/m = βh(m). Let us resort to the class of min-
imally homophilic networks constructed in Corollary 4. First, upon relabelling the names
of the agents in Nθ , for each type θ ∈ Θ and the type θ′ , θ, let us set Nθ ≡ {i1, i2, . . . , inθ }.
Then, for each agent ik ∈ Nθ , let us consider Ni1(x) = Nθ ′ ∪ {i2, . . . , i1+m}, Ni2(x) =
Nθ ′ ∪ {i3, . . . , i2+m}, and so on iteratively, until reaching Ninθ (x) = Nθ ′ ∪ {i1, . . . , im}.

Regarding stability, note that the available resource Rm = nA + m, where we have
m ∈ {α(nB), ..., nB − 2}, is sufficiently large to allow for each pair of same-type agents to
enjoy a full-investment made by (at least) one of the two agents in the pair. Any network in
the suggested class is therefore robust to bilateral deviations. Moreover, while each agent

37



i ∈ Nθ is investing exactly Rm − nθ ′ units in her same-type fellows, she is also receiving
exactly Rm − nθ ′ units of investment from the agents in her own population group. Thus,
for the proposed level of assortative interest β ≥ βh(m), the networks in the suggested
class are also robust to unilateral deviations.

Regarding efficiency, notice that for each agent i ∈ Nθ and each type θ ∈ Θ, it follows
that the quality of her different-type links is di(x) = nθ ′, for θ′ , θ, while the quality of
her same-type links is si = Rm − nθ ′. The networks in this class satisfy then the necessary
condition for efficiency in Proposition 4 that the qualities (si, di) be common across all
agents within each population group. Furthermore, for β ≥ βh(m), the suggested class of
networks satisfies also the sufficient condition in (ii) of Proposition 4. The proposed class
of mimimally homophilic networks are thus stable and efficient.

For the particular case where the sizes of both population groups are the same, the
following corollary to Proposition 5 allows us to fully characterize efficient networks in
terms of the assortative interests of the population.

Corollary 6. Assume Assumption 2 and Assumption 3, and consider a preference spec-
ification u. Then,

(i) the investment profile x̂ that induces a unique class of efficient networks g = g(x̂)
satisfies, for each i ∈ Nθ and each θ ∈ Θ,∑

j∈N i
θ

xi j =
∑
j∈N i

θ

x ji = n/2 − 1,
∑

j∈Nθ ′

xi j = Rm − (n/2 − 1), and
∑
j∈Nθ

x ji = (m + 1)

if and only if level of assortative interests in the population is sufficiently high, with the
particular form given by β < βl(m);

(ii) the investment profile x̂ that induces a unique class of efficient networks g = g(x̂)
satisfies, for each i ∈ Nθ and each θ ∈ Θ,

∑
j∈N i

θ
xi j =

∑
j∈N i

θ
x ji = Rm − n/2, and∑

j∈Nθ ′
xi j =

∑
j∈Nθ ′

x ji = n/2 if and only if the level of assortative interests in the
population is sufficiently low, with the particular form given by β > βh(m);

(iii) if the level of assortative interests in the population is intermediate, with the
particular form given by β ∈ (βl(m), βh(m)), then the investment profile x̂ that induces a
unique class of efficient networks g = g(x̂) satisfies ŷ = yAA = yBB with β = (Rm− ŷ)/ŷ =

(n + 2m)/2ŷ − 1 and, therefore, ŷ = Rm/(1 + β) = (n + 2m)/2(1 + β) for an aggregate
investment choice ŷ ∈ (Rm − n/2, n/2 − 1).

Going back to our examples, recall that the stable partially homophilic network which
was constructed in Example 3 (under the class explored in Subsection 3.6) required a level
of assortative interests β = 8/7. Now, it can be also verified that the network obtained in
the example features ŷ =

∑
j∈N i

θ
xi j =

∑
j∈N i

θ
x ji = 7/3 for each agent i ∈ Nθ and each type

θ ∈ Θ. We observe from the implication in (iii) of Corollary 6 that efficiency requires in
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this case that ŷ = Rm/(1 + β) = 5(1 + 8/7) = 7/3. Hence, such a partially homophilic
network is both stable and efficient.

5 Literature Connections

The stability notion that we use in this paper builds closely upon the weak bilateral equi-
librium (wBE) stability concept proposed by Boucher (2015), which, in turn, weakens the
concept of bilateral equilibrium due to Goyal and Vega-Redondo (2007). As commented
in fn. 4, the set of stable networks in our set up would be empty if we were to use instead
the (slightly strongest) bilateral equilibrium notion. The notion that we use, though, allows
us to reduce crucially the multiplicity of stable networks usually present in the theoretical
literature. Our approach to analyze efficient friendship networks follows the canonical
framework proposed by Jackson and Wolinsky (1996).

On the instrumental side, our proposal where agents make continuous-investment
choices that determine the “strength,” or quality, of the link that connects them can also
be found in Bloch and Dutta (2009). Another similarity with Bloch and Dutta (2009)
lies in considering a fixed amount of a resource that the agents can allocate in their link
formation efforts. Their model is quite different, though, in the questions explored. In
particular, they do not consider agents with different characteristics and, accordingly,
neither analyze questions regarding homophily.26 The investigation of frameworks where
agents do have different characteristics has indeed been an important topic in the social
and economic networks literature. Most efforts have traditionally focused on the question
of how assortative interests influence the outcomes of relevant network-based phenomena,
such as decisions in labor markets (Montgomery, 1991), opinion formation (Golub and
Jackson, 2012), friendship formation via matching (Currarini et al., 2009), formation of
random networks (Bramoullé et al., 2012), or strategic network formation (De Marti and
Zenou, 2017; Iijima and Kamada, 2017).

Perhaps the closest paper to ours in terms of the type of questions asked is Currarini
et al. (2009) who propose a search model of endogenous matching to explore friendship
connections. As in our model, in their setting agents care ultimately only about same-type
and different-type links. Their exercise is quite different from ours as their goal is to
match (and rationalize) certain empirical regularities regarding homophily. We attempt
to provide a theoretical framework, in which plausible assortative interests are taken as
a primitive, that helps us understand properties of patterns with relevant homophilic or
heterophilic features in the presence of capacity constraints. At the modeling level, we
use a simultaneous-move network formation game, while their model is one of dynamic

26The pioneering contributions on strategic link formation within the economic and social networks
literature for the case where agents are not distinguished according to (extrinsic) characteristics are Jackson
and Wolinsky (1996) and Bala and Goyal (2000). Other contemporary efforts include Goyal and Vega-
Redondo (2007), Hagenbach and Koessler (2010), Galeotti et al. (2013), and Baumann (2021).
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matching. Also within the empirical literature, Mele (2017) proposes a model of network
formation in which, as in our setting, agents are divided into two different categories.
For the case of sufficiently large networks, his analysis provides useful identification and
estimation techniques. Another paper related to ours is DeMarti and Zenou (2017), which
adapts the symmetric connections model by Jackson and Wolinsky (1996) to a setting in
which individuals may have two types and linking costs are endogenous. Unlike our setup,
link formation is done through a discrete choice in their model. Also, they consider the
stability notion of pairwise stability, which would lead to a profound multiplicity of stable
patterns if applied to our setting. Another recent paper, quite different from ours in terms
of the questions asked and the setup proposed, in which agents differ ex ante in their
characteristics is Galeotti et al. (2006).

Baccara and Yariv (2013) consider a model in which homophily arises endogenously
as a consequence of a (binary) project choice. Similarly to our model, a given parameter
determines the (exogenous) inclination of the agents for one project or another. In their
model, stability requires that agents connect sufficiently with (relatively) similar individ-
uals. The authors also provide conditions under which connections between dissimilar
agents arise in stable patterns. In addition, for an application in which the projects allow
for information sharing, their analysis conveys the message that segregation is easier to
maintain when the preferences of the individuals between the two projects are sufficiently
opposed. Although their model is quite different form ours, their perspective of study-
ing endogenous homophily levels that may arise from quite general (exogenous) tastes
resembles our approach to the topic.

Finally, some of ourmessages relative to the stability of heterophilic friendship patterns
are reminiscent of the insights provided by Galenianos (2021). His model is quite different
from ours as he does not consider general friendship connections but focuses on the
formation of referral networks in job markets. As a consequence, the motivations of the
agents to form links are very specific to job market situations. In particular, workers
form links in order to refer to and be refereed by according to the demands of firms.
Interestingly, referral networks in his setup feature high levels of heterophily, with the
particular form of being hierarchical.27

6 Concluding Remarks

This paper has developed a framework to explore stability and efficiency properties of
friendship networks in populations of agents with different characteristics. We have
taken any plausible underlying level of assortative interests as a primitive of the model.
Additionally, we have assumed that investments in each single relationship are bounded
and that the agents are capacity-constrained in the amounts of investments they can make

27Recent empirical work on labormarkets (Hensvik and Skans, 2016; Beaman et al., 2018) offers findings
very consistent with such results of hierarchical networks of referrals.
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relative to the rest of the population. The proposed setting has the flavor of traditional
(static) consumption/production choice models. The decision choice that faces each
agent when assessing her unilateral incentives resembles a classical utility-maximization
problem, though the feasibility constraint has different fundamentals and form. The
presence of capacity constraints stands out as crucial consideration. In those elements,
our proposal is perhaps quite different from most available models in the literature on
social networks. However, our results complement some views offered by the recent
papers that deal with homophily and segregation in groups. We conclude by discussing
how our insights can be regarded in consonance with key implications of a few pieces of
available evidence and models.

In their approach to match empirically observed patterns of inbreeding homophily,
Currarini et al. (2009), argue that a bias in preferences towards same-type agents (alongside
with a bias in the matching process proposed in their setting) is needed. Without such
a bias, the larger group would feature inbreeding homophily while the smaller group
would necessarily exhibit inbreeding heterophily. Under our notion of extreme form of
homophilic patterns (maximally homophilic networks), our Lemma 3 implies that the
larger group features always inbreeding homophily. This is clearly in consonance with the
results byCurrarini et al. (2009). In contrast, whether the smaller group exhibits inbreeding
homophily or not depends crucially on the capacity constraint. This is a natural implication
in our setting because the slack of resources (after investing with full intensity in same-
type agents) that individuals can invest in different-type agents conditions crucially the
degree of homophily that a stable network can have. The capacity constraint is, therefore,
particularly critical in determining the homophilic behavior of the smallest group. Note
that the members of the smaller group devote relatively fewer resources (compared to the
members of the larger group) to invest in their same-type fellows—due to the discrepancies
between population sizes. Given this, if the capacity constraint is relatively loose, then
the agents from the smaller group can invest a relatively high amount of slack resources
in different-type agents. As a consequence, the overall pattern of connections exhibits
inbreeding heterophily. Intuitively, if they have the means and time for it, members of
small groups can interact relatively more with agents with different characteristics, even
in overall extremely homophilic patterns. The message that agents from smaller groups
tend to have relatively more connections with people of different characteristics has also
been pointed out by Blau (1977).

Our Lemma 3 also shows that both population groups exhibit inbreeding heterophily
in our stable minimally homophilic networks. Simultaneous inbreeding heterophily for
both large and small population groups is not in accordance with the empirically ob-
served patterns documented in Currarini et al. (2009). Such patterns of extreme forms
of heterophilic behavior are also at odds with most findings of the sociological literature
on homophily issues in groups (e.g., McPherson et al. (2001)). However, as argued in
some parts of the paper, the levels of disassortative interests required for such minimally
homophilic networks to be stable in our setting are in consonance with those observed in
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more “practical” connections, mainly in the professional sphere. Here we should recall
that the Add Health data used by Currarini et al. (2009) corresponds to a High School,
thus naturally capturing connections where assortative interests would be primarily driven
by socialization, self-identification, or pure entertainment motivations. The assortative
levels typically present in such real-world environments would lead to that no minimally
homophilic network is stable in our setting. As to the welfare analysis, Currarini et al.
(2009) invoke particular forms for the agents’ utilities. Under such forms, they obtain that,
provided that (i) same-type and different-type links are substitutes, and (ii) the marginal
benefits of same-type links are the highest possible, a pattern of complete segregation
maximizes welfare. This insight is clearly in consonance with our result that, for high
enough assortative interests, maximally homophilic networks are efficient.

The approach followed by Baccara and Yariv (2013) considers a setting in which
an agent’s type captures her inclination towards either of two public projects. Then, in
stable situations, agents that are similar in their inclinations must end up in the same
endogenous group. Their general model thus delivers a certain degree of (endogenous)
homophily. In addition, for an application in which connections allow for information
sharing, their results point towards that fully segregated groups composed by agents
of the same type can emerge only when types are sufficiently different. Although our
modeling choice is very different, their implication is in consonance with our result that
maximally homophilic networks arise as stable only if interests for making friends lean
strongly towards assortativity—i.e., β ∈ (0, βl(m)]. The analysis of Baccara and Yariv
(2013) also obtains that stable groups may be heterogeneous with the particular form that
such patterns must not contain only one type of individual. In this vein, our result that
stable maximally homophilic networks are characterized by a certain degree of quality of
heterophilic connections is also in consonance.

Finally, let us comment on a plausiblemodification to enrich the setting proposed in this
paper, and the scope of results. This modification consists of introducing heterogeneity in
the strength of the assortative interests of the agents. This would have strong implications
for the emergence of stable structures. In particular, the resulting new setting would be
incapable of deriving stable structures in which all individuals behave as in solution [b] in
Fig. 1. Stable partially homophilic networks would instead require that some individuals
behave as in solutions [c] or [a] in Fig. 1—due to that condition βsi = di would no longer be
required for all agents for a common β. Interestingly, even under heterogeneous assortative
interests, our results in Proposition 1 and Proposition 2 would continue to hold with minor
modifications. In particular, consider, without loss of generality, that β1 > β2 > · · · > βn.
Then, the result in Proposition 1would continue to hold if β1 ≤ β̂(x)—i.e., if the individual
with the lowest assortative interests values relatively more same-type links than different
type ones. Similarly, the result of Proposition 2 would continue to hold if βn ≥ β̃(x)—i.e.,
if the individual with the highest assortative interests values relatively more different-type
links than same-type ones.
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Appendix

Omitted Proofs.—

Proof of Lemma 2. Consider a strategy profile x that induces a friendship network
g = g(x). Since nθ ≥ 3 for each type θ ∈ Θ, note that we can consider a deviation by a
pair of agents i, j ∈ N , for i , j, described as follows.

(i) Agent i decreases the sum of her investments in agents from N \ { j} by an amount
εi > 0 and, at the same time, agent j decreases the sum of her investments in agents from
N \ {i} by an amount ε j > 0. Note that, if agents i and j are linked in the proposed
strategy x, then agent i can decrease her investment in agents N \ { j} by a positive amount
only if

∑
k∈N\{ j} xik > 0. Given the monotonicity considered on the utility function u

(Assumption 2-(2)), it follows that, even in the case in which xi j = 1 in the proposed
strategy x, we still have

∑
k∈N\{ j} xik > 0 for agent i’s optimal choice as long as Rm > 1.

Assumption 3 leads then to that we can always propose the suggested decrease of the sum
of agent i’s investments in some agents different from agent j. The argument is totally
analogous for agent j to be able save an investment ε j > 0 in her links with agents different
from agent i.

(ii) Agent i invests the saved amount εi in agent j and, at the same time, agent j invests
the saved amount ε j in agent i.

This class of deviations allows for: (1) if agents i, j ∈ Nθ , then we obtain new values
s′i = si + ε j and s′j = s j + εi for the total qualities of same-type links, while the total
qualities of different-type links di and d j remain unchanged; (2) if i ∈ Nθ and j ∈ Nθ ′, then
we obtain new values d′i = di + ε j and d′j = d j + εi for the total qualities of different-type
links, while the total qualities of same-type links si and s j remain unchanged. Therefore,
given that preferences are monotone, is it strictly profitable for both agents i and j to jointly
follow this class of deviations. Observe then that this class of deviations is avoided if the
strategy profile x does not allow for part (ii) of the deviation to be feasible. Specifically,
such deviations are not feasible if, for each pair of different agents in the population, at least
one of the agents is already investing with full intensity in the other agent under the strategy
profile. Furthermore, in the absence of this condition, Assumption 2 and Assumption 3
ensure that the class of described deviations is the only possible one where, starting from
a profile in which all agents exhaust their resources, both agents from a given pair can
strictly benefit by deviating bilaterally from such a profile. This is so because, given
that preferences are monotone in the investments of the agents and that they exhaust their
available resources, any other deviation where a pair of agents do not redirect third-party
investments into each other would leave at least one of the agents indifferent.

Finally, we must also verify that the size of the resource Rm allows for at least one
agent from each pair of different agents in the population to invest with full intensity in
the other agent. Given that the resource Rm is uniform across all agents, notice that if
Rm allows each agent i to invest with full intensity xi j = 1 in (1) half of the number of
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remaining agents in the population if n is odd, or in (2) half of the entire number of agents
in the population, if n is even, then we can guarantee the condition required by the lemma
to prevent the described class of bilateral profitable deviations. Indeed, note that such
lower bounds on Rm give us the smallest sizes of the resource that allow for the required
condition on the strategy profile x to be satisfied. Since nA ≥ n/2 and Assumption 3
requires that Rm ≥ nA + 1, we can guarantee that the agents have always sufficient amount
of resource Rm to satisfy the condition stated in the lemma.

Proof of Lemma 3. Consider a given investment profile x that induces a friendship
network g = g(x). Note first that the homophily index of type θ specified in Definition 4
can be rewritten as

Hθ(x) =
s̄θ(x)

s̄θ(x) + d̄θ(x)
=

1

1 + d̄θ (x)
s̄θ (x)

.

Then, it follows for our setup with two population groups Nθ and Nθ ′, that the condition
that describes inbreeding homophily satisfies

Hθ(x) >
nθ
n
⇔

∑
i∈Nθ

di(x)∑
i∈Nθ

si(x)
<

nθ ′
nθ
.

First, (i) suppose that g = g(x) is a maximally homophilic networks. Then, for each type
θ ∈ Θ, we have

∑
i∈Nθ

si(x) = nθ(nθ − 1) and∑
i∈Nθ

di(x) =
∑
i∈Nθ

Rm − (nθ − 1) +
∑

j∈Nθ ′
x ji

2

=
nθ[Rm − (nθ − 1)] +

∑
j∈Nθ ′

∑
i∈Nθ

x ji

2
=

nRm − nθ(nθ − 1) − nθ ′(nθ ′ − 1)
2

.

Thus, ∑
i∈Nθ

di(x)∑
i∈Nθ

si(x)
=

nRm − nθ(nθ − 1) − nθ ′(nθ ′ − 1)
2nθ(nθ − 1)

.

It follows then that

Hθ(x) >
nθ
n
⇔

nRm − nθ(nθ − 1) − nθ ′(nθ ′ − 1)
2nθ(nθ − 1)

<
nθ ′
nθ

⇔ nRm < 2nθnθ ′ − 2nθ ′ + n2
θ − nθ + (nθ ′)2 − nθ ′

⇔ nRm <
(
nθ + n′θ

)2
− 3(n − nθ) − nθ

⇔ nRm < n2 − 3n + 2nθ
⇔ Rm < (n − 3) + 2nθ/n
⇔ m < (nB − 3) + 2nθ/(nA + nB).
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Secondly, (ii) suppose that g = g(x) is a minimally homophilic networks. Then, for each
type θ ∈ Θ, we have

∑
i∈Nθ

di(x) = nθnθ ′ and∑
i∈Nθ

si(x) =
∑
i∈Nθ

[Rm − nθ ′] +
∑

j∈N i
θ

x ji

2

=
nθ[Rm − nθ ′] +

∑
j∈N i

θ

∑
i∈Nθ

x ji

2
= nθ[Rm − nθ ′].

We can then derive ∑
i∈Nθ

di(x)∑
i∈Nθ

si(x)
=

nθ ′
Rm − nθ ′

.

Therefore,
Hθ(x) <

nθ
n
⇔

nθ ′
Rm − nθ ′

>
nθ ′
nθ
⇔ Rm < n.

Since Rm ≤ n−2 byAssumption 3, it follows then that eachminimally homophilic network
satisfies inbreeding heterophily with respect to each type θ ∈ Θ.

Proof of Proposition 1. Consider a strategy profile x that induces a maximally ho-
mophilic network g = g(x). Hence, for each agent i ∈ N of type θ, we have xi j = 1 for
each j ∈ N i

θ and
∑

j∈Nθ ′
xi j = Rm − (nθ − 1) for the type θ′ , θ.

1. Robustness against unilateral deviations: First, it directly follows that I s
i (x−i) =

(1/2)(nθ − 1) for each agent i of type θ. Then, the particular value β(θ; x−i) of the slope
β specified in Eq. (5), under which each agent i of type θ is indifferent between investing
with full intensity in links to each other agent of her same type and investing less, equals:

β(θ; x−i) =
Rm − (nθ − 1) + 2Id

i (x−i)

2(nθ − 1)
.

Therefore, if for each possible type θ ∈ Θ, and each type θ′ , θ, the level β of assortative
interests equals the indifference cutoff value β(θ; x−i) above, then no agent has unilateral
incentives to deviate from the proposed strategy profile x, as stated by condition 1. of the
proposition. On the other hand, if β > β(θ; x−i), then such an agent i ∈ Nθ has incentives
to deviate from investing with full intensity in each other agent of her same type. Thus,
the inequality β ≤ β(θ; x−i), for each i ∈ Nθ and each type θ ∈ Θ, gives us a necessary
condition for x to be stable.

2. Robustness against bilateral deviations: Note first that if β ≤ β(θ; x−i), then no
agent of type θ has incentives to lower her full-intensity investments in each other agent
of type θ. Therefore, no pair of two different agents of the same type θ have incentives
to deviate from investing with full intensity in each other agent of type θ either. The
only possible class of profitable bilateral deviations that remains to be ruled out must then
involve two agents of different types. In particular, since nθ ≥ 3 for each type θ, we can
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consider a deviation by a pair of agents i and j, with i ∈ NA and j ∈ NB, in which each of
the two agents redirect third-party investments into each other. Then, as already argued in
the proof of Lemma 2, such a (unique) class of bilateral deviations is prevented if for each
pair of agents that belong to different groups at least one of the agents is already investing
with full intensity in the other agent, as stated in 2. of the proposition.

Finally, we must also verify that the size of the resource Rm allows for the type of
connections described in conditions 1. and 2. of the proposition to be feasible for all
agents in the population. Note first, that under a strategy profile x that induces a maximally
homophilic network, the capacity constraint requirement (Assumption 3) for each agent
i ∈ Nθ , for θ ∈ Θ, takes the form

(nθ − 1) +
∑

j∈Nθ ′

xi j ≤ Rm.

By aggregating the requirement above across all agents i ∈ Nθ , for both types θ ∈ Θ, it
follows then that the size of the resource Rm must necessarily satisfy

nA(nA − 1) + nB(nB − 1) +
∑
i∈NA

∑
j∈NB

xi j +
∑
i∈NB

∑
j∈NA

xi j ≤ nRm. (10)

Note that the number of possible pairs (i, j) ∈ NA × NB of different-type agents is nAnB.
In addition, if for each of such nAnB different possible pairs, we require that at least one
of the agents from the pair invests with full intensity in the other agent, then the minimum
aggregate quality for the connections among different-type agents required to satisfy
condition 2. amounts precisely to nAnB. Therefore, any profile x that satisfies condition
2. of the proposition must necessarily satisfy nAnB ≤

∑
i∈NA

∑
j∈NB

xi j +
∑

i∈NB

∑
j∈NA

xi j .
Then, by combining this equality with the condition in Eq. (10) above, we obtain that

nA(nA − 1) + nB(nB − 1) + nAnB ≤ nRm

follows as a necessary requirement from condition 2 of the proposition. Simple algebra
allows to rewrite the inequality above as Rm ≥ (n − 1) − nAnB/n, as stated in condition 2.
of the proposition. This concludes all the required arguments.

Proof of Corollary 2. The sufficient conditions for β and Rm derived by Corollary 2
follow from the requirements of Proposition 1. First, note that that, for the class of strategy
profiles x proposed in the corollary, we have Id

i (x−i) ≥ (nB − 1)/2 for each agent i ∈ Nθ

and each type θ ∈ Θ. Then, by combining the lower bound (nB − 1)/2 on the total
incoming intensity Id

i (x−i) with the condition 1. derived in Proposition 1, it follows that
β ≤ [Rm + (nB − nA)]/2(nA − 1) is a sufficient condition for all agents to have incentives
to invest with full intensity in each other same-type agent. Secondly, note that condition
2. of Proposition 1 is satisfied by construction for the strategy profiles x described by
the corollary. Thirdly, consider an agent i ∈ Nθ , for θ ∈ Θ, who makes investments as
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prescribed by the class of strategy profiles x proposed in Corollary 2 but does not invest
any extra amount on any other different-type agent. Then, it follows that xi satisfies∑

j∈N i
θ

xi j +
∑

j∈Nθ ′

xi j = (nθ − 1) + nθ ′/2 for nθ ′ even;∑
j∈N i

θ

xi j +
∑

j∈Nθ ′

xi j = (nθ − 1) + (nθ ′ − 1)/2 + 1 for nθ ′ odd.

In addition, we know that

(nθ − 1) + (nθ ′ − 1)/2 + 1 ≤ nA + (nB − 1)/2

for each agent i ∈ Nθ and each type θ ∈ Θ. Therefore, if Rm ≥ nA+ (nB−1)/2, we can then
ensure that each agent has the amount of resource Rm required to follow the prescription
for the class of strategy profiles x proposed by Corollary 2.

Proof of Proposition 2. Consider a strategy profile x that induces a minimally ho-
mophilic network g = g(x). Hence, for each agent i ∈ N of type θ, we have xi j = 1 for
each j ∈ Nθ ′ and

∑
j∈N i

θ
xi j = Rm − nθ ′ for the type θ′ , θ.

1. Robustness against unilateral deviations: It follows directly that Id
i (x−i) = (1/2)nθ ′

for each agent i of type θ. Then, the particular value β(θ; x−i) of the slope β specified
in Eq. (5), under which each agent i of type θ is indifferent between investing with full
intensity in links to each different-type agent and investing less, equals:

β(θ; x−i) =
2nθ ′

(Rm − nθ ′) + 2I s
i (x−i)

.

Therefore, if for each possible type θ ∈ Θ, and each type θ′ , θ, the level β of assor-
tative interests equals the indifference value β(θ; x−i) above, then no agent has unilateral
incentives to deviate from the proposed strategy profile x, as stated by condition 1. of
the proposition. On the other hand, if β < β(θ; x−i), then such an agent i ∈ Nθ has
incentives to deviate from investing with full intensity in each different-type agent. Thus,
the inequality β ≥ β(θ; x−i), for each i ∈ Nθ and each type θ ∈ Θ, gives us a necessary
condition for x to be stable.

2. Robustness against bilateral deviations: Note first that if β ≥ β(θ; x−i), then no
agent of type θ has incentives to lower her full-intensity investments in each agent of type
θ′. Therefore, no pair of two different agents have incentives to deviate from investing with
full intensity in each other either. The only possible class of profitable bilateral deviations
that remains to be ruled out must then involve two agents of the same type. In particular,
since nθ ≥ 3 for each type θ ∈ Θ, we can consider a deviation by a pair of agents i, j ∈ Nθ ,
for i , j, in which both agents redirect third-party investments into each other. Then, as
already argued in the proof of Lemma 2, such a (unique) class of bilateral deviations is
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prevented if for each pair of agents that belong to the same group, at least one of the agents
is already investing with full intensity in the other agent, as stated in 2. of the proposition.

Finally, we must also verify that the size of the resource Rm allows for the type of
connections described in conditions 1. and 2. of the proposition to be feasible for all
agents in the population. Note first, that under a strategy profile x that induces a minimally
homophilic network, the capacity constraint requirement (Assumption 3) for each agent
i ∈ Nθ , for θ ∈ Θ, takes the form ∑

j∈Nθ\{ j}

xi j + nθ ′ ≤ Rm.

By aggregating the requirement above across all agents i ∈ Nθ , for both types θ ∈ Θ, it
follows then that the size of the resource Rm must necessarily satisfy∑

i∈Nθ

∑
j∈Nθ\{ j}

xi j + nθnθ ′ ≤ nθRm (11)

Note that the number of possible pairs (i, j) ∈ Nθ × Nθ , with i , j, between same-type
agents is nθ(nθ − 1). Then, if for each of such nθ(nθ − 1) different possible pairs, we
require that at least one of the agents from the pair invests with full intensity in the
other agent, it follows that the aggregate quality between all the agents of type θ, for
any profile x that satisfies condition 2. of the proposition, must be at least nθ(nθ − 1)/2
Therefore, a minimally homophilic network that satisfies condition 2. of the proposition
must necessarily satisfy nθ(nθ − 1)/2 ≤

∑
i∈Nθ

∑
j∈Nθ\{ j} xi j . Then, by combining this

equality with the condition in Eq. (11) above, we obtain that (nθ −1)/2+nθ ′ ≤ Rm for each
θ ∈ Θ is a necessary requirement for condition 2. of the proposition to be satisfied. Since
we are considering nA ≥ nB without loss of generality, it follows that Rm ≥ nA+ (nB−1)/2
is the required necessary condition on the size of the total resource. This concludes all the
required arguments.

Proof of Corollary 4. The sufficient conditions for β and Rm derived by Corollary 4
follow from the requirements of Proposition 2. First, note that that, for the class of strategy
profiles x proposed in the corollary, we have I s

i (x−i) is always lower for agents i ∈ NB
than for agents i ∈ NA. Also, for each agent i ∈ NB, we have I s

i (x−i) = m. Then, by
combining the lower bound m on the total incoming intensity I s

i (x−i) with the condition 1.
derived in Proposition 2, it follows that β ≥ 2nA/(Rm − nA + m) is a sufficient condition
for all agents to have incentives to invest with full intensity in each different-type agent.
Secondly, note that condition 2. of Proposition 2 is satisfied by construction for the strategy
profiles x described by the corollary. Secondly, it is easy to verify that, by construction,
the proposed strategy profile always satisfies the key condition given in Lemma 2 to
prevent profitable bilateral deviations. Finally, since we are considering that nA ≥ nB, it
follows that lA = nA − nB for each i ∈ NA, whereas lB = 0 for each i ∈ NB Therefore, if
Rm ≥ nA + α(nB), then we can ensure that each agent has, at least, the amount Rm of the
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resource required to follow the prescription for the class of strategy profiles x proposed
by Corollary 4.

Proof of Proposition 3. We prove both statements (i) and (ii) of the proposition by
contradiction.

(i) Consider a strategy profile x that induces amaximally homophilic network g = g(x).
Then, for each agent i ∈ Nθ , and each type θ ∈ Θ, we have xi j = 1 for each j ∈ N i

θ .
Therefore, I s

i (x−i) = (1/2)(nθ − 1) for each agent i ∈ Nθ , and each type θ ∈ Θ. Then,
using the expression of the upper bound β(θ; x−i) for the indifference value of β, which is
associated to the unilateral optimal choice described by [a] in Fig. 1, it follows that

β̂i,θ(x) ≡
Rm − (nθ − 1) + 2Id

i (x−i)

2(nθ − 1)
(12)

gives us the indifference value for the level of assortative interests under which agent
i is indifferent between investing with full intensity in each other same-type agent and
investing lower amounts in some same-type agent. First, suppose that the strategy profile
x is such that x ji = [Rm − (nθ ′ − 1)]/nθ for each pair of agents i ∈ Nθ , and j ∈ Nθ ′, for
each type θ ∈ Θ and the type θ′ , θ. Thus, we are considering a strategy profile x where
each agent in the population receives a constant proportional amount of investments from
each different-type agent. In this case the investment received by each agent from each
different-type agent depends only on the group to which she belongs. In particular, for
each i ∈ Nθ and each θ ∈ Θ, the indifference value specified in Eq. (12) takes the form

β̂θ ≡
nRm − nθ(nθ − 1) − nθ ′(nθ ′ − 1)

2(nθ − 1)nθ
.

Suppose that β ∈ (1,+∞). Then, each agent i ∈ Nθ has (weak) incentives to invest with
full intensity in each other same-type agent only if

β̂θ > 1 ⇔ nRm − 3nθ(nθ − 1) − nθ ′(nθ ′ − 1) > 0.

Now, recall that the capacity constraint described by Assumption 3 imposes that Rm <
nθ + nθ ′ − 1. Therefore, we know that

nRm − 3nθ(nθ − 1)−nθ ′(nθ ′ − 1) < (nθ + nθ ′)(nθ + nθ ′ − 1) − 3nθ(nθ − 1) − nθ ′(nθ ′ − 1)
= 2(n′θ − nθ + 1) < 0 for some type θ ∈ Θ, and for θ′ , θ,

since we are considering that nA ≥ nB. Therefore, each agent i ∈ NA has (strict) incentives
to deviate from the proposed profile x that induces a maximally homophilic network.
Secondly, consider another strategy profile x′ , x that induces as well a maximally
homophilic network g = g(x′) and such that β̃i,θ(x′) > β̃θ . Recall that preferences are
monotone and, therefore, that the resource constraint

∑
j,i x′i j ≤ Rm must be satisfied with

equality for each agent who has no unilateral incentives to deviate from x′. Then, it must
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be the case that β̃ j,θ(x′) < β̃θ for some other agent j ∈ Nθ . In other words, if β̃i,θ(x′) > 1
for some agent i ∈ Nθ , then it must be the case that β̃ j,θ(x′) < 1 for some other agent
j ∈ Nθ . In this case, we observe that such an agent j would have (strict) incentives to
deviate unilaterally from x′. Therefore, we conclude that if β ∈ (1,+∞), then at least one
agent in the population has unilateral incentives to deviate from any profile that induces a
maximally homophilic network.

(ii) Consider a strategy profile x that induces aminimally homophilic network g = g(x).
Then, for each agent i ∈ Nθ , and each type θ ∈ Θ, we have xi j = 1 for each j ∈ Nθ ′ for
the type θ , θ. Therefore, Id

i (x−i) = (1/2)nθ ′ for each agent i ∈ Nθ , and each type θ ∈ Θ.
Then, using the expression of the upper bound β(θ; x−i) for the indifference value of β,
which is associated to the unilateral optimal choice described by [c] in Fig. 1, it follows
that

β̃i,θ(x) ≡
2nθ ′

(Rm − nθ ′) + 2I s
i (x−i)

(13)

gives us the indifference value for the level of assortative interests under which agent i is
indifferent between investing with full intensity in each different-type agent and investing
lower amounts in some different-type agent. First, suppose that the strategy profile x
is such that x ji = (Rm − nθ ′)/(nθ − 1) for each pair of agent i, j ∈ Nθ , with i , j, and
for each type θ ∈ Θ. Thus, we are considering a strategy profile x where each agent in
the population receives a constant proportional amount of investments from each other
same-type agent. In this case, the investment received by each agent from each other
same-type agent depends only on the group to which she belongs. In particular, for each
i ∈ Nθ and each θ ∈ Θ, the indifference value specified in Eq. (13) takes the form

β̃θ ≡
nθ ′

(Rm − nθ ′)
.

Suppose that β ∈ (0, 1]. Then, each agent i ∈ Nθ has (weak) incentives to invest with full
intensity in each different-type agent only if β̃θ ≤ 1. Using the expression for β̃θ derived
above, we observe that this is possible for each type θ ∈ Θ only if Rm > 2nA and Rm > 2nB
simultaneously. However, this leads to a contradiction since such inequalities cannot
happen simultaneously given that Assumption 3 requires that Rm < n − 1. Secondly,
consider another strategy profile x′ , x that induces as well a minimally homophilic
network g = g(x′) and such that β̃i,θ(x′) < β̃θ . Recall that preferences are monotone and,
therefore, that the resource constraint

∑
j,i x′i j ≤ Rm (described by Assumption 3) must be

satisfied with equality for each agent who has no unilateral incentives to deviate from x′.
Then, it must be the case that β̃ j,θ(x′) > β̃θ for some other agent j ∈ Nθ . In other words, if
β̃i,θ(x′) ≤ 1 for some agent i ∈ Nθ , then it must be the case that β̃ j,θ(x′) > 1 for some other
agent j ∈ Nθ . In this case, we observe that such an agent j would have strict incentives
to deviate unilaterally from x′. Therefore, we conclude that if β ∈ (0, 1], then at least one
agent in the population has unilateral incentives to deviate from any profile that induces a
minimally homophilic network.
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Proof of Corollary 5. First, consider a strategy profile x that induces a maximally
homophilic network g = g(x). Stability of such a network requires that no agent wants
to deviate unilaterally from the proposed strategy profile x. Specifically, stability of a
maximally homophilic network g = g(x) requires that

β ≤ β̂(x) = inf
i∈Nθ,θ∈Θ

Rm − (nθ − 1) +
∑

j∈Nθ ′
x ji

2(nθ − 1)
.

Now, let us complete the description of the proposed profile x by requiring that each agent
i ∈ Nθ , for each θ ∈ Θ, receives a common intensity of investments from the different-type
agents. Thus, consider that x satisfies

∑
j∈Nθ ′

x ji = nθ ′[Rm − (nθ ′ − 1)]/nθ for each i ∈ Nθ

and each θ ∈ Θ. This construction of x entails that the highest possible cutoff value β̂(x)
for the optimal unilateral behavior where agents want to invest with full intensity in all
other same-type agents (which was described by [a] of Fig. 1) cannot exceed one. Then,
given that nA ≥ nB, we observe that such a proposed maximally homophilic network
g = g(x) satisfies the criterion of robustness against unilateral deviations if and only if

β ≤
nRm − [nA(nA − 1)) + nB(nB − 1)]

2nA(nA − 1)

=
n(m + 1) + nB(nA − nB)

2nA(nA − 1)
≡ βl(m),

where, as derived in the proof of Proposition 3 (i), the cutoff value βl(m) in the right-hand
side of the expression above cannot exceed one. Furthermore, Proposition 3 established
that if β ≤ 1, then there do not exist stable minimally homophilic networks. As a
consequence, provided that the corresponding cutoff value βl(m) is strictly less than one,
if β ∈ (βl(m), 1], then all stable networks must necessarily be partially homophilic . For
the case in which the cutoff value βl(m) equals one, recall that Proposition 3 guaranteed
then that stable maximally homophilic networks do not exist for β > 1.

Secondly, consider a strategy profile x that induces a minimally homophilic network
g = g(x). Recall that robustness against unilateral deviations for such a network to be
stable it requires that

β ≥ β̃(x) = sup
i∈Nθ,θ∈Θ

2nθ ′
(Rm − nθ ′) +

∑
j∈Nθ

i
x ji
.

Let us complete the description of the proposed profile x by requiring that each agent
i ∈ Nθ , for each θ ∈ Θ, receives a common intensity of investments from the same-type
agents. Thus, consider that x satisfies

∑
j∈Nθ

i
x ji = Rm − nθ ′ for each i ∈ Nθ and each

θ ∈ Θ. This proposal gives us a profile x that yields the lowest possible cutoff value β̃(x)
for the optimal unilateral behavior where all agents want to invest with full intensity in all
different-type agents (which was described by [c] of Fig. 1). Since we are considering that
nA ≥ nB, it follows that such a proposed minimally homophilic network g = g(x) satisfies
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the criterion of robustness against unilateral deviations if and only if

β ≥
nA

Rm − nA
=

nA

m
≡ βh(m),

where the cutoff value βh(m) exceeds one. It follows from Proposition 3 (ii), that if β > 1,
then stable maximally homophilic networks do not exist. As a consequence, we know that
if β ∈ (1, βh(m)], then all stable networks must necessarily be partially homophilic .

This completes our derivation of an interval [βl(m), βh(m)] of “intermediate” assorta-
tive for which only partially homophilic networks are stable friendship networks.

Proof of Proposition 4. Consider the social value function v, defined in Eq. (8). First,
consider an arbitrary investment profile x ∈ X that induces a collection of sets of pairs
({(si(x), di(x))}i∈NA, {(s j(x), d j(x))} j∈NB) of same-type and different-type qualities. Then,
the average of the qualities for same-type and different-type links, respectively, across all
agents in each group Nθ can be computed as

s̄θ(x) = (1/nθ)
∑
i∈Nθ

si(x) = (1/2nθ)
∑
i∈Nθ

∑
j∈N i

θ

[xi j + x ji] (14)

and
d̄θ(x) = (1/nθ)

∑
i∈Nθ

di(x) = (1/2nθ)
∑
i∈Nθ

∑
j∈Nθ ′

[xi j + x ji]. (15)

Secondly, using the definition of same-type si(x) and different-type di(x) aggregate
qualities, let us propose another investment profile x̂ ∈ X such that si(x̂) and di(x̂) be
constant across all agents i ∈ Nθ for each type θ ∈ Θ. From the definition of the aggregate
qualities, it follows that the quantities

∑
j∈N i

θ
x̂i j ,

∑
j∈N i

θ
x̂ ji,

∑
j∈Nθ ′

x̂i j , and
∑

j∈Nθ ′
x̂ ji

must be constant across agents within each population group. Accordingly, we start by
proposing a profile x̂ such that, for each agent i ∈ Nθ and each type θ ∈ Θ, we have

(a)
∑

j∈N i
θ

x̂i j = yθθ and
∑

j∈N i
θ

x̂ ji = zθθ , and

(b)
∑

j∈Nθ ′
x̂i j = yθθ ′ and

∑
j∈Nθ ′

x̂ ji = zθθ ′.

In particular, for any agent i ∈ Nθ , the amount yθθ describes i’s total investments in
the rest of her same-type agents, whereas yθθ ′ describes i’s aggregate investments in all
different-type agents. Similarly, for any agent i ∈ Nθ , the amount zθθ describes the total of
investments that i receives from the rest of her same-type agents, whereas zθθ ′ describes i’s
aggregate investments that i receives from all different-type agents. Thus, under the profile
x̂, the sums of the aggregate outgoing and incoming investments are only contingent on
the characteristics of the agents.

Given the proposal above, note first that, by summing the investments made and
received over all same-type agents for any type, it follows that nθ yθθ = nθzθθ , so that
it must necessarily be the case that yθθ = zθθ . Secondly, by noting that the sum of the
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investments made by all agents from Nθ in all the agents of the group Nθ ′ must be equal
to the sum of the investments received by all agents of the group Nθ ′ from all agents
from Nθ , it follows nθ yθθ ′ = nθ ′zθ ′θ . Our proposal accordingly incorporates also these two
considerations. Crucially, from the definitions of si and di, it follows that the characteristics
imposed by our proposal for the profile x̂ are necessary and sufficient to make si(x̂) = s j(x̂)
and di(x̂) = d j(x̂) for each pair of (distinct) agents i, j ∈ Nθ , for each type θ ∈ Θ.

Furthermore, consider that, for such a profile x̂, each agent satisfies her capacity
constraint (Assumption 3) with equality. Then, the constant investments proposed by
means of x̂ must satisfy

yθθ + yθθ ′ = Rm for each θ ∈ Θ, and for θ′ , θ. (16)

The associated qualities are simply derived as si(x̂) = (1/2)[yθθ + zθθ] = yθθ and di(x̂) =
(1/2)[yθθ ′+zθθ ′], where, as indicated above, wemust also consider that zθθ ′ = (nθ ′/nθ)yθ ′θ ,
for each agent i ∈ Nθ , each type θ ∈ Θ, and θ′ , θ.

Now, we can set a relationship between the linkage qualities associated to x̂, which are
constant across all agents within each population group, and the average qualities derived
in Eq. (14) and Eq. (15) for the profile x. By requiring si(x̂) = s̄θ(x) and di(x̂) = d̄θ(x) for
each i ∈ Nθ and each θ ∈ Θ, we obtain

yθθ =
1
nθ

∑
i∈Nθ

∑
j∈N i

θ

xi j, zθθ =
1
nθ

∑
i∈Nθ

∑
j∈N i

θ

x ji, and

yθθ ′ =
1
nθ

∑
i∈Nθ

∑
j∈Nθ ′

xi j, zθθ ′ =
1
nθ

∑
i∈Nθ

∑
j∈Nθ ′

x ji .

(17)

Conditional on the above established relationship (Eq. (17)) between the profiles x and x̂,
clearly the profile x̂ satisfies the capacity condition required by Eq. (16):

yθθ + yθθ ′ = (1/nθ)
( ∑

i∈Nθ

∑
j∈N i

θ

xi j +
∑
i∈Nθ

∑
j∈Nθ ′

xi j

)
= Rm.

Also, as required, notice that our relationship between the two investment profiles, entails
that x̂ satisfies x̂i j ∈ [0, 1] for each pair of (distinct) agents i, j ∈ N .

Therefore, we are able to establish the key equality u(si(x̂), di(x̂)) = u(s̄θ(x), d̄θ(x)) for
each agent i ∈ Nθ , and each θ ∈ Θ, where each (si(x̂), di(x̂)) ∈ Di(x̂−i) for each agent i.
Importantly, we can establish such an equality regardless of whether (s̄θ(x), d̄θ(x)) belongs
to the feasible set Di(x−i) for each agent i ∈ Nθ , and each θ ∈ Θ. Now, since the utility
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function u is (strictly) concave in the (si, di) space (Assumption 2–(3)), it follows that

v(g(x̂)) =
∑
i∈N

u(si(x̂), di(x̂)) =
∑
θ∈Θ

∑
i∈Nθ

u(s̄θ(x), d̄θ(x))

=
∑
θ∈Θ

∑
i∈Nθ

u
(
(1/nθ)

∑
i∈Nθ

si(x), (1/nθ)
∑
i∈Nθ

di(x)
)

≥
∑
θ∈Θ

∑
i∈Nθ

(1/nθ)
∑
i∈Nθ

u(si(x), di(x)) =
∑
θ∈Θ

∑
i∈Nθ

u(si(x), di(x)) = v(g(x)),

where the inequality above holds strictly unless our initial investment profile x satisfies
si(x) = s̄θ(x) and di(x) = d̄θ(x) for each i ∈ Nθ and each θ ∈ Θ. It follows then that an
efficient network g = g(x̂) requires that the qualities (si(x̂), di(x̂)) be constant across all
agents i within each of the two population groups.

Proof of Proposition 5. Let x̂ be a strategy profile that satisfies the necessary condition
given by Proposition 4. Then, we can fully describe the profile x̂ using the type-contingent
aggregate investments yAA, yBB. The social planner can select in a totally independent way
the pair of variables yAA, yBB, under the respective restrictions yAA ∈ [Rm − nB, nA − 1]
and yBB ∈ [Rm − nA, nB − 1]. In turn, the aggregated investments yAB, yBA, zAB, and zBA
can be derived from the optimally selected quantities yAA, yBB. Using the expression of
the social value in Eq. (9), the problem that the social planner can thus be set as

max
{yAA,yBB}

nAu
(
yAA,

nRm − nAyAA − nByBB

2nA

)
+ nBu

(
yBB,

nRm − nAyAA − nByBB

2nB

)
s.t.: yAA ∈ [Rm − nB, nA − 1];

yBB ∈ [Rm − nA, nB − 1].

(18)

Observation of the problem in Eq. (18) above allows us to proceed as follows.

(i) We identify a sufficient condition on the level of assortative interests β under which,
regardless of the aggregate investment choice yAA of the agents from the larger group NA,
the utility of any agent from the smaller group NB is maximized when she invests with
full intensity in all other same-type agents, i.e., yBB = nB − 1. Furthermore, the identified
condition on β simultaneously ensures that the agents from the larger group NA maximize
their utilities when they choose to invest with full intensity in all other same-type agents,
i.e., yAA = nA − 1, independently of the choice yBB of the agents from the smaller group.
Since the welfare function v(g(x̂)) aggregates the utilities of all the agents, for each of the
two groups, it follows that the derived condition is sufficient to guarantee that the value
function is maximized when all agents invest with full intensity in all other same-type
agents, i.e., yAA = nA − 1 and yBB = nB − 1.

On the one hand, let us take as given an arbitrary quantity yAA ∈ [Rm − nB, nA − 1],
and suppose then that the social planner chooses the quantity yBB in order to maximize
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the utility of a representative agent of the smaller group, NB. Thus, we are now restricting
attention to the (hypothetical) problem

max
yBB∈[Rm−nA,nB−1]

u
(
yBB,

nRm − nAyAA − nByBB

2nB

)
.

Then, recall that Assumption 2–(4) (b) establishes that ∂u(si, di)/∂si > ∂u(si, di)/∂di for
each (si, di) such that di/si > β. Therefore, if

β <
nRm − nAyAA − nByBB

2nByBB

for each yBB ∈ [Rm − nA, nB − 1], then we can guarantee that maximization of the utility
of any agent i ∈ NB is uniquely achieved by selecting yBB = nB − 1, for each possible
yAA ∈ [Rm−nB, nA−1]. Furthermore, since the function [nRm − nAyAA − nByBB]/2nByBB
is strictly decreasing in yBB, it follows that

β <
nRm − nAyAA − nB(nB − 1)

2nB(nB − 1)
(19)

is a sufficient condition that ensures maximization of the utility of the agents j ∈ NB is
characterized by yBB = nB − 1, for any given yAA ∈ [Rm − nB, nA − 1].

On the other hand, let us now take as given an arbitrary quantity yBB ∈ [Rm−nA, nB−1],
and then restrict attention to the (hypothetical) problem of choosing the value of yAA that
solves

max
yAA∈[Rm−nB,nA−1]

u
(
yAA,

nRm − nAyAA − nByBB

2nA

)
.

Using again Assumption 2–(4) (b), we can guarantee the solution to the problem above is
characterized by yAA = nA − 1 if

β <
nRm − nAyAA − nByBB

2nAyAA

for each yAA ∈ [Rm − nB, nA − 1]. Since the function [nRm − nAyAA − nByBB]/2nAyAA is
strictly decreasing in yAA, it follows that

β <
nRm − nA(nA − 1) − nByBB

2nA(nA − 1)
(20)

is a sufficient condition that ensures maximization of the utility of the agents i ∈ NA is
characterized by yAA = nA − 1, for any choice yBB ∈ [Rm − nA, nB − 1].

Therefore, if both conditions Eq. (19) and Eq. (20) are simultaneously satisfied for
values yAA = nA−1 and yBB = nB−1, then the utility of the agents from the smaller group
NB is maximized when they choose yBB = nB − 1 conditional on the choice yAA = nA − 1
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while, at the same time, the utility of the agents from the larger group NA is maximized
when they choose yAA = nA − 1 conditional on the choice yBB = nB − 1. Since conditions
Eq. (19) and Eq. (20) combined guarantee such (common) features for the optimal choices
of the two separate (hypothetical) problems—relative to each of the two populations—,
we obtain that such sufficient conditions combined ensure that the only solution to the
problem in Eq. (18) entails yAA = nA − 1 and yBB = nB − 1.

Since nA ≥ nB, we have that

nRm − nA(nA − 1) − nB(nB − 1)
2nB(nB − 1)

≥
nRm − nA(nA − 1) − nB(nB − 1)

2nA(nA − 1)
.

In addition, recall from Eq. (3) the expression of the particular value

βl(m) = [nRm − nA(nA − 1) − nB(nB − 1)]/2nA(nA − 1)
= [n(m + 1) + nB(nA − nB)]/2nA(nA − 1)

for the level of assortative interests. Therefore, if β < βl(m), then the only way in which
the social planner can maximize the social value v(g(x̂)) is by choosing yAA = nA − 1,
yBB = nB − 1. Such choices also yield yAB = m + 1, yBA = (m + 1) + (nA − nB),
zAB = (nB/nA)[(m + 1) + (nA − nB)], and zBA = (nA/nB)(m + 1). Accordingly, for each
agent i ∈ Nθ , each type θ ∈ Θ, and θ′ , θ, an efficient network ĝ = g(x̂) entails

si(x̂) = nθ − 1 and di(x̂) =
n(m + 1) + nB(nA − nB)

2nθ
.

(ii) Similarly to the arguments used in (i), we consider separately two hypothetical
problems that address the maximization of the utility of any agent from a given group,
regardless of the choices made by the agents from the other group. Again, we derive
a sufficient condition on the level of assortative interests β under which, regardless of
the aggregate investment choice yAA of the agents from the larger group NA, the utility
of any agent from the smaller group NB is maximized when the agents invests with full
intensity in all different-type agents, i.e., yBB = Rm − nA. Furthermore, such a condition
on β guarantees at the same time that the agents from the larger group NA maximize
their utilities when they invest with full intensity in all different-type agents as well, i.e.,
yAA = Rn−nB, independently of the choice yBB of the agents from the smaller group. The
additive nature of the welfare function v(g(x̂)) leads then to that the derived condition is
sufficient to guarantee that the value function is maximized when all agents invest with
full intensity in all other same-type agents, i.e., yAA = Rn − nB and yBB = Rn − nA.

First, fix an arbitrary quantity yAA ∈ [Rm − nB, nA − 1], and let us look for the quantity
yBB that solves the (hypothetical) problem

max
yBB∈[Rm−nA,nB−1]

u
(
yBB,

nRm − nAyAA − nByBB

2nB

)
.
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Then, recall Assumption 2–(4) (c) establishes that ∂u(si, di)/∂si < ∂u(si, di)/∂di for each
(si, di) such that di/si < β. Therefore, if

β >
nRm − nAyAA − nByBB

2nByBB

for each yBB ∈ [Rm − nA, nB − 1], then we can guarantee that the solution to the
problem of this first step is uniquely given by yBB = Rm − nA. Since the function
[nRm − nAyAA − nByBB]/2nByBB is strictly decreasing in yBB, it follows that

β >
nRm − nAyAA − nB(Rm − nA)

2nB(Rm − nA)
(21)

is a sufficient condition that ensures that maximization of the utility of the agents j ∈ NB
is characterized by yBB = Rm − nA, for any given yAA ∈ [Rm − nB, nA − 1].

Secondly, take as given an arbitrary quantity yBB ∈ [Rm − nA, nB − 1], and then restrict
attention to the (hypothetical) problem of finding the values of yAA that solve

max
yAA∈[Rm−nB,nA−1]

u
(
yAA,

nRm − nAyAA − nByBB

2nA

)
.

Using again Assumption 2–(4) (c), we can guarantee the solution to the problem above is
characterized by yAA = Rm − nB if

β >
nRm − nAyAA − nByBB

2nAyAA

for each yAA ∈ [Rm − nB, nA − 1]. Since the function [nRm − nAyAA − nByBB]/2nAyAA is
strictly decreasing in yAA, it follows that

β >
nRm − nA(Rm − nB) − nByBB

2nAyBB
(22)

is a sufficient condition that ensures maximization of the utility of the agents i ∈ NA is
characterized by yAA = Rm − nB, for any given yBB ∈ [Rm − nA, nB − 1].

Crucially, if both conditions Eq. (21) and Eq. (22) are simultaneously satisfied for
yAA = Rm−nB and yBB = Rm−nA, then the utility of the agents from the smaller group NB
is maximized when they choose yBB = Rm − nA conditional on the choice yAA = Rm − nB,
while at the same time, the utility of the agents from the smaller group NA is maximized
when they choose yAA = Rm − nB conditional on the choice yBB = Rm − nA. Since such
sufficient conditions combined guarantee the above mentioned (common) features for the
optimal choices of the two (hypothetical) problems relative to each of the populations, it
follows that such conditions are sufficient to ensure that the only solution to the problem
in Eq. (18) entails yAA = Rm − nB and yBB = Rm − nA.
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Note that Eq. (21) and Eq. (22) are simultaneously satisfied for yAA = Rm − nB and
yBB = Rm − nA if and only if

β > max
{ nA

Rm − nA
,

nB

Rm − nB

}
=

nA

Rm − nA
,

where we are taking into account that nA ≥ nB. Therefore, if

β >
nA

Rm − nA
=

nA

m
= βh(m),

then the only way in which the social planner can maximize the value function v(g(x̂)) is
by choosing

yAA = (nA − nB) + m, yBB = m, yAB = zAB = nB, yBA = zBA = nA.

Accordingly, for each agent i ∈ Nθ , each type θ ∈ Θ, and θ′ , θ, an efficient network
ĝ = g(x̂) entails si(x̂) = Rm − nθ ′ and di(x̂) = nθ ′.

Proof of Corollary 6. Let x̂ be a strategy profile that satisfies the necessary condition
given by Proposition 4. Take nA = nB = n/2. Then, the problem that faces the social
planner stated in Eq. (18) can be rewritten as

max
{yAA,yBB}

V(yAA, yBB)

s.t.: yAA ∈ [Rm − n/2, n/2 − 1];
yBB ∈ [Rm − n/2, n/2 − 1],

(23)

where

V(yAA, yBB) ≡ u
(
yAA, Rm − (1/2)(yAA + yBB)

)
+ u

(
yBB, Rm − (1/2)(yAA + yBB)

)
.

Using the problem in Eq. (23), we proceed then as follows.

(i) Note that, for each type θ ∈ Θ, we have that ∂V(yAA, yBB)/∂yθ > 0 if and only if

∂u
(
yθθ, Rm − (1/2)(yAA + yBB)

)
∂si

>
∂u

(
yθθ, Rm − (1/2)(yAA + yBB)

)
∂di

Assumption 2–(4) (b) allows us to establish that the inequality above is satisfied if and
only if

β <
Rm − (1/2)(yAA + yBB)

yθθ

or each yAA, yBB ∈ [Rm − n/2, n/2 − 1]. Then, for the symmetric choice yAA = yBB =

n/2− 1—in which each agent from each population group invests with full intensity in all
other same-type fellows—to be associated to an efficient network, the required necessary
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and sufficient condition on the level of assortative interests takes the form

β <
2Rm

n − 2
− 1 =

2(m + 1)
n − 2

= βl(m),

as stated.

(ii) For each type θ ∈ Θ, we have that ∂V(yAA, yBB)/∂yθ < 0 if and only if

∂u
(
yθθ, Rm − (1/2)(yAA + yBB)

)
∂si

<
∂u

(
yθθ, Rm − (1/2)(yAA + yBB)

)
∂di

It follows from Assumption 2–(4) (c) that the inequality above is satisfied if and only if

β >
Rm − (1/2)(yAA + yBB)

yθθ

for each yAA, yBB ∈ [Rm − n/2, n/2 − 1]. Then, for the symmetric choice yAA = yBB =

Rm − n/2—in which each agent from each population group invests with full intensity in
all different-type agents—to be associated to an efficient network, the required necessary
and sufficient condition on the level of assortative interests takes the form

β >
n

2Rm − n
=

n
2m
= βh(m),

as stated.

(iii) Consider a level of assortative interests β ∈ (βl(m), βh(m)). Then, it follows from
(i) and (ii) above that neither choices in which all agents invest with full intensity in all their
same-type fellows nor choices in which they invest with full intensity in all different-type
agents induce efficient networks. Now, consider symmetric aggregate investment choices
yAA = yBB = ŷ that give rise to partially homophilic networks that belong to the class in
which all agents behave unilaterally as in [b] of Lemma 1 ([b] in Fig. 1). Such choices
induce an efficient network if and only if

∂u
(
yθθ, Rm − (1/2)(yAA + yBB)

)
∂si

=
∂u

(
yθθ, Rm − (1/2)(yAA + yBB)

)
∂di

It follows from Assumption 2–(4) (a) that the requirement above is satisfied if and only if

β =
Rm − ŷ

ŷ
=

n + 2m
2ŷ

− 1 ⇔ ŷ = yAA = yBB =
Rm

1 + β
=

n + 2m
2(1 + β)

for ŷ ∈ (Rm − n/2, n/2 − 1). Finally, note that symmetric aggregate investment choices
yAA = yBB = ŷ are required to ensure that the condition above holds for both population
groups.
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