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Abstract 

 
This paper considers a population of agents that are connected through a network that allows 

them to aggregate locally their pieces of private information about some uncertain (exogenous) 

parameter of interest. The agents wish to match their actions to the true value of the parameter 

and to the actions of the other agents. I ask how the design of (interim) efficient (minimally 

connected) networks depends on the level of complementarity in the agents’ actions. When the 

level of complementarity is either low or high, efficient networks are characterized by a high 

number of different neighborhoods and, as a consequence, by low levels of connectivity. For 

intermediate levels of complementarity in actions, efficient networks tend to feature low 

numbers of highly connected neighborhoods. The implications of this paper are relevant in 

security environments where agents are naturally interpreted as analysts who try to forecast the 

value of a parameter that describes a potential threat to security. 
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Resumen

 
Este artículo considera una población de agentes que están conectados mediante una red a 

través de la cual agregan localmente su información privada sobre un parámetro (exógeno) 

incierto. Los agentes desean tomar acciones adecuadas al parámetro y a las acciones del resto 

de agentes. Este trabajo estudia cómo el diseño de redes eficientes (mínimamente conectadas) 

depende del nivel de complementariedad en las acciones de los agentes. Cuando el nivel de 

complementariedad es o bien muy bajo o bien muy alto, las redes eficientes se caracterizan por 

un gran número de vecindades y, en consecuencia, por bajos niveles de conectividad. Para niveles 

intermedios de complementariedad en acciones, las redes eficientes están compuestas por 

pocas vecindades, que están altamente conectadas. Las implicaciones de este artículo son 

relevantes en contextos de seguridad donde los agentes pueden ser interpretados como 

analistas que tratan de anticipar el valor de una variable que describe una amenaza de 

seguridad.  
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Abstract

This paper considers a population of agents that are connected through a network
that allows them to aggregate locally their pieces of private information about some
uncertain (exogenous) parameter of interest. The agents wish to match their actions
to the true value of the parameter and to the actions of the other agents. I ask how
the design of (interim) efficient (minimally connected) networks depends on the level
of complementarity in the agents’ actions. When the level of complementarity is
either low or high, efficient networks are characterized by a high number of different
neighborhoods and, as a consequence, by low levels of connectivity. For intermediate
levels of complementarity in actions, efficient networks tend to feature low numbers
of highly connected neighborhoods. The implications of this paper are relevant in
security environments where agents are naturally interpreted as analysts who try to
forecast the value of a parameter that describes a potential threat to security.

Keywords: Networks, information aggregation, beauty-contests, strategic com-
plementarity, efficiency

JEL Classification: C72, D83, D84, D85

1 Introduction

In many environments of social, economic, or political interest, decision-makers seek to
match their actions both to some unknown underlying variable and to the actions chosen
by others. While the first motive is typically regarded as a “fundamental motive,” the
second motive is purely a “coordination motive.”1 The canonical framework that captures
∗I gratefully acknowledge financial support from CONACYT, SNI grant 41826. I thank Alessandro

Pavan for his useful comments. This research project was conducted while visiting the Department of
Economics at UC San Diego. I thank this institution for its generous hospitality and support. Any
remaining errors are my own.

1For example, suppose that the profitability of some investment activity depends on an uncertain
exogenous state of the world and on the aggregate investment. Here investors would like to pick investment
strategies that match both the exogenous variable and the other investors’ strategies as well.
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both types of motives in strategic scenarios is that of “beauty contest” games.2 Beauty
contests are particularly suitable to capture environments where security issues are a
main concern. A typical example is that of a group of analysts who independently try
to forecast an exogenous variable that describes a potential threat to security. Each of
the analysts wishes to follow an strategy appropriate for the true value of the uncertain
variable. Since coordination helps prevent (or at least mitigate) security threats, the
analyst also wishes to follow a course of action similar to the other analysts’ actions.3

In these beauty contests scenarios, decision-makers wish to collect information that helps
them resolve their uncertainty about the underlying variable and the likely actions of the
others.

In practice, the presence of networks is ubiquitous in contexts where agents collect and
share information. When decision-makers can only interact locally through a network, the
architecture of the network places restrictions on the ways in which they can aggregate
their pieces of private information. The typical approach considers that decision-makers
can only share information with their neighbors in the network. Often, security ana-
lysts are involved in networks where neighborhoods are teams of forecasters. In many
real-world situations, a network of security analysts encompasses formal connections be-
tween different organizations as well as more informal connections based on friendship,
family, or informal online relationships. In these environments, efficiency insights provide
particularly useful recommendations for the design of teams of analysts, as well as for
the appropriateness of establishing collaboration links between different security organi-
zations.

This paper considers a (relatively large) population of decision-makers (or security
analysts) that have access to some private signals about the underlying state and that, in
addition, can share locally the information that they obtain from their signals according
to their connections in a network. For this framework, I explore how the “coordination
motive” influences the design of efficient networks the maximize the social welfare (or,
equivalently, that minimize the social loss) of the population of agents. The efficiency
benchmark used in this paper considers interim utilities. In other words, in order to
design an efficient network, the central planner is able to access the information available
to the agents upon receiving their signals. This seems a reasonable approach in many
environments. For security contexts, it is certainly appealing when one considers that
the central planner is some central institution that coordinates the teams of analysts that

2The “beauty contest” terminology comes originally from a well-know parable by Keynes (1936) (Chap-
ter 12). Following the seminal contribution of Morris & Shin (2002), “beauty contest” games have been
extensively used to explore a wide range of phenomena in a number of settings, including investment games
(Angeletos & Pavan (2004) and Angeletos & Pavan (2007)), financial markets (Allen et al. (2006)), mo-
nopolistic competition (Hellwig & Veldkamp (2009)), or models of political leadership (Dewan & Myatt
(2008)), among others.

3For example, under a terrorist attack threat, the analyst wishes to assess which is the most likely
location of the attack but also wants to come up with locations not very distant from those predicted by
other analysts. In this way, counterterrorism measures could be more effective to prevent the attack.
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constitute the network.
To investigate this normative question in the context of networks, one must understand

the forces behind two different mechanisms. First, how does the informative content of a
fixed set of signals varies with the sizes of the neighborhoods that receive and aggregate
the information contained in such signals? Secondly, how does social welfare depend on
the informational content derived from the aggregation of a fixed set of signals? The first
question refers to the scale properties of information aggregation within a set of agents.
To answer the second question, one needs to investigate the social value of information
when both a fundamental motive and a coordination motive are present.4

This paper shows in Proposition 1 that the informational content of a fixed set of
signals increases monotonically as the neighborhoods that aggregate them are split into
smaller neighborhoods. In other words, there are “diminishing returns” that affect the fi-
nal informational content from information aggregation as neighborhoods increase in size.
Interestingly enough, by selecting a network, one affects simultaneously two different as-
pects of information that influence the social value of information. First, as acknowledged
above, the informational content of the set of available signals is affected. Secondly, by
selecting the size and number of neighborhoods, one also determines whether the infor-
mation finally available to the agents has either a more private or more public nature.
Proposition 2 shows that, when the levels of strategic complementarity in actions are
either relatively low or high, social welfare decreases with the informational content of
the entire set of signals. For intermediate levels of strategic complementarity in actions,
social welfare increases with the informational content of the signals of all the agents. By
combining both insights, it follows that, when the coordination motive is either low or
high, efficient networks are characterized by larger numbers of different neighborhoods
that, therefore, give rise to relatively low connected networks. For intermediate degrees
of the coordination motive, efficiency is characterized by lower numbers of distinct neigh-
borhoods, so that high rates of connectivity are common features in efficient networks.

The rest of this paper is structured as follows. Section 2 lays out the model and
Section 3 specifies the efficiency benchmark. The main results are obtained in Section 4
and Section 5 concludes. While the derivation of equilibrium is a crucial step to investigate
efficiency in the proposed benchmark, it is also constructive so that the required technical
details are included in the main text. Other technical details, such as the proofs of Lemma
1, Corollary 1, and of Propositions 1 and 2, are relegated to the Appendix.

4Angeletos & Pavan (2007) have investigated in a very comprehensive way the social value of informa-
tion in an ex-ante efficiency benchmark without restrictions in the form of local interactions and where
the agents have both private and public sources of information. For that environment, they have shown
that whether more informational content increases or decreases welfare depends on whether equilibrium
is efficient under both complete and incomplete information or only under incomplete information. Their
contribution highlights that understanding the social value of information depends crucially on the notion
of efficiency used. Without a well-specified efficiency benchmark, assessing the social value of informa-
tion follows the folk theorem that “everything goes” in a second-best world. Assessing the social value of
information with complementarities in the presence of networks remains a question far from understood.
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2 Model

There is a (measure–1) continuum of agents, indexed by i ∈ [0, 1], that wish to estimate
an unknown state of the world θ ∈ R. Each agent receives a utility according to a common
(quadratic) utility function u(a, θ) that depends on an action profile a : [0, 1]→ R, where
a(i) is the action chosen by agent i, and on the state θ. In security environments, we can
think of agents as security analysts or forecasters.

2.1 Preferences and Information Structure

The main intuition is conveyed using a beauty contest game (as in Morris & Shin (2002),
Angeletos & Pavan (2007), Hellwig & Veldkamp (2009), Dewan & Myatt (2008), and
Jimenez-Martinez (2014)). Each agent i’s utility is given by

u(a, θ) = −
(
a(i)− (1− λ)θ − λ

∫ 1

0

a(h)dh

)2

, (1)

where λ ∈ (0, 1) is a parameter that measures the degree of strategic complementarity
in the agents’ actions. Intuitively, λ captures the relative importance of the coordina-
tion motive in the agent’s utility. Higher values of λ indicate higher levels of strategic
complementarity.

The state of the world θ is unknown to the agents and, for tractability reasons, the
underlying information structure is assumed to be Gaussian with θ ∼ N(0, σ2). Agents
receive some (exogenous) information about θ from a finite set of noisy signals S =
{s1, s2, . . . , sn} throughout two periods t ∈ {0, 1}.5 Specifically, signals are (exogenously)
assigned to agents according to a finite partition {N1, N2, . . . , Nn} of the set of agents
[0, 1], where N1 = [0, i1], Nj = (ij−1, ij] for each j ∈ {2, . . . , n− 1}, and Nn = (in−1, 1].
Then, at t = 0 each agent i ∈ Nj receives a noisy signal sj = θ+εj, where εj ∼ N(0, π−1

j ).
Thus, πj measures the precision of the signal received by any agent i ∈ Nj. Each noise
term εj is independent of the state θ and the noise terms {εj}nj=1 are independent from
each other as well. Signals are assumed to be (conditional on the state) independent (i.e.,
the conditional random variables {(sj | θ)}nj=1 are independent).6

2.2 The Network Structure

After receiving their initial information, agents can communicate at t = 1 according to
a network. The network is a directed graph that specifies the sets of agents that each
agent can listen to. Specifically, a network is described by means of a network function

5Although the set of agents is a continuum, I assume that agents have access to a finite number of
signals for technical tractability.

6Of course, signals cannot be unconditional independent because all of them depend on the state of
the world.
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g : [0, 1] → ∆([0, 1]) where g(i) indicates agent i’s neighborhood or the set of agents
that i can listen to. In security environments, we can think of a neighborhood as a
team of security analysts or forecasters or, alternatively, as a group of different security
organizations that collaborate in some security project. Each agent listens to himself,
i ∈ g(i). Let Υg = g([0, 1]) denote the image set of the network function g, or the set
of possible neighborhoods in the network, and let us use υ, τ , and δ to denote generic
neighborhoods throughout the paper. To avoid trivial cases, I will restrict attention in
this paper to networks that are minimally connected in the sense that υ ∩ τ 6= ∅ for each
υ, τ ∈ Υg.

For a network function g, all agents in a given neighborhood υ ∈ Υg can observe
at t = 1 the same signals.7 After appropriately relabeling the signals from the set S

of available signals, let s(υ) denote a restricted signal profile, which simply consists of
the string of signals observed by all agents in neighborhood υ. Since the set of available
signals S is finite, each restricted signal profile s(υ) must be finite as well.

2.3 Optimal Actions

Given the informational constraints imposed by the network function g, the agents are
engaged in a game where each agent i ∈ [0, 1] that belongs to some neighborhood υ ∈
Υg chooses at t = 1 an action a∗(i) so as to maximize his conditional expected utility
E
[
u(a, θ)

∣∣ s(υ)
]
. Under the preference specification in (1), a Bayesian Nash equilibrium

(BNE) is a function a∗ : [0, 1]→ R such that, for each neighborhood υ ∈ Υg, each agent
i ∈ υ solves the problem

min
a(i)∈R

E

[(
a(i)− (1− λ)θ − λ

∫
τ∈Υg

∫
h∈τ

a(h) dh dτ

)2 ∣∣∣∣ s(υ)

]
.

Nonetheless, we can restrict attention to symmetric BNE where all agents that belong
to some common neighborhood (and that, therefore, observe the same signals) optimally
choose the same action. To see this, suppose that some agents in a given neighborhood
τ choose different optimal actions. Then, the expectation that the agents of some other
neighborhood υ have about the average optimal action followed in neighborhood τ is

E

[∫
h∈τ

a∗(h) dh
∣∣∣ s(υ)

]
=

∫
h∈τ

E [a∗(h) | s(υ)] dh

This expectation depends on the restricted signal profile s(υ) but not on the names of
the agents i ∈ υ. All agents that belong to some common neighborhood υ aggregate the
same information and obtain some common posteriors on θ and on the actions chosen by

7Thus, I am assuming that there is no loss of information in the communication process that takes
place within each neighborhood.
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other agents. In addition, since the loss function that the agents in υ are minimizing is
strictly convex, the corresponding best-reply must be unique. Therefore, we must have∫

h∈τ
E [a∗(h) | s(υ)] dh = E

[
a∗(τ)

∣∣ s(υ)
]
,

where a∗(τ) indicates the optimal action chosen by any agent that belongs to neighborhood
τ . Notice that the optimal action a∗(τ) depends only on the subset of signals s(τ).8 From
here onwards, let us use for simplicity Eυ[·] and Varυ[·] to indicate, respectively, the
conditional expectation E[· | s(υ)] and the conditional variance Var[· | s(υ)] operators for
all agents in a neighborhood υ. Given the previous observations, an action function
a∗ : Υg → R is a symmetric BNE if and only if each action a∗(υ) satisfies

a∗(υ) = (1− λ)Eυ[θ] + λ

∫
τ∈Υg

Eυ
[
a∗(τ)

]
dτ. (2)

Given our focus on symmetric BNE, we can express, for a fixed network function g,
a BNE action profile a∗ as a function a∗ : Υg → R where a∗(υ) indicates the optimal
action chosen by all agents in neighborhood g. For each υ ∈ Υg, the action a∗(υ) satisfies
equation (2).

2.4 Social Welfare

Consider that, after period t = 0 and before period t = 1, a central planner designs the
structure of the network g. Thus, the social planner has access to the signals available to
all agents in the population. Notice that the expected loss of all agents that belong to a
neighborhood υ under a symmetric BNE action function a∗, is

Eυ

[(
a∗(υ)− (1− λ)θ − λ

∫
υ∈Υg

a∗(υ) dυ

)2
]
. (3)

The goal of this paper is to investigate how the central planner optimally chooses g so as
to minimize the social welfare loss function

L(g) =

∫
υ∈Υg

Eυ

[(
a∗(υ)− (1− λ)θ − λ

∫
υ∈Υg

a∗(υ) dυ

)2
]
dυ. (4)

To address this central question, we need first to characterize the class of linear sym-
metric BNE of the game that the agents play once they receive their signals at t = 1
according to the restrictions imposed by the network. To obtain a solution to equa-
tion (2), we first need to study how information is aggregated within neighborhoods and

8Formally, it would be more precise to use a∗(s(τ)). Yet, without loss of generality, we can drop the
term s(·) to simplify notation.
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how this influences the agents’ optimal actions. For a network function g and for each
neighborhood υ ∈ Υg, the pairs (θ, s(υ)) are jointly normally distributed. Let us use
Cov[θ, s(υ)] to denote the vector of covariances between the state of the world and each
of the signals observed in neighborhood υ and Var[s(υ)] to denote the variance-covariance
matrix of the signals in s(υ). It follows from some basic results on normal distributions
that

Eυ[θ] = Cov[θ, s(υ)]′ · Var[s(υ)]−1 · s(υ) (5)

and
Varυ[θ] = σ2 − Cov[θ, s(υ)]′ · Var[s(υ)]−1 · Cov[θ, s(υ)]. (6)

Hence, normality ensures that the conditional expectations of the state are linear in the
signals s(υ) observed in neighborhood υ. This implication allows us to focus the analysis
of BNE on linear strategies. If the agents in one neighborhood τ use a linear strategy
with respect to the signals that they observe s(τ), then the optimal action that the agents
follow in neighborhood υ must be also linear in the signals s(υ). While linear strategies
are fairly simple and intuitive to interpret, in the current context they are also robust.

3 The Efficient Network Design Problem

This section derives the agents’ optimal actions in a symmetric BNE and the correspond-
ing social welfare loss function. Since the technical details required to set up the problem
that the social planner addresses are constructive, they are provided here in the main text.
Equation (2) reveals that the optimal action followed by the agents of a given neighbor-
hood υ depend in a recursive way on the average posterior expectation over the true
state. Hence, we need to account for arbitrarily higher-order average posterior expecta-
tions over θ. To formalize these average posterior expectations, let Ē[θ] =

∫
υ∈Υg

Eυ[θ] dυ

be the average posterior expectation on the state over neighbourhoods.9 We begin with
the 0–order average posterior expectation. Notice that the 0–order average posterior ex-
pectation must coincide with the true realization of the state so that we set Ē(0)[θ] = θ.
Then, for the 1–order average posterior expectation, we have

Ē(1)[θ] = Ē
[
Ē(0)[θ]

]
= Ē[θ] =

∫
υ∈Υg

Eυ[θ] dυ,

whereas for higher-order average posterior expectations, we use Ē(m)[θ] = Ē
[
Ē(m−1)[θ]

]
to

indicate in a recursive way the m–order average posterior expectation over θ, for m ≥ 2.
With such higher-order average posterior expectations in place, recursive application of

9Since this is an average over all neighborhoods, Ē[θ] equivalently indicates the average posterior
expectation on θ over all agents.
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equation (2) allows us to express the optimal action followed in neighborhood υ as

a∗(υ) = (1− λ)
[
Eυ
[
Ē(0)[θ]

]
+ λEυ

[
Ē(1)[θ]

]
+ λ2Eυ

[
Ē(2)[θ]

]
+ · · ·

]
= (1− λ)

∞∑
m=0

λmEυ
[
Ē(m)[θ]

]
.

(7)

Under the assumed information structure, we have Cov[θ, s(υ)] = σ21, where 1 is a vector
of ones with the same dimension as the profile of signals s(υ). Also, recall that sj = θ+εj,
where Eυ[εj] = 0 for all signals j = 1, . . . , n. Take a given realization of the state θ. Then,
using the expression in (5), we obtain that Eυ

[
Ē(0)[θ]

]
= Eυ[θ], for the 0–order average

posterior expectation, and

Eυ
[
Ē(1)[θ]

]
= Eυ

[(
σ2

∫
υ∈Υg

1′ · Var[s(υ)]−1 · 1 dυ

)
θ

]

=

(
σ2

∫
υ∈Υg

1′ · Var[s(υ)]−1 · 1 dυ

)
Eυ[θ],

for the 1–order average posterior expectation. Here again, 1 is a vector of ones with the
same dimension as the profile of signals s(υ). Let us use

ωg = σ2

∫
υ∈Υg

1′ · Var[s(υ)]−1 · 1 dυ

to denote the average of the inverses of the posterior variances of the state across neigh-
borhoods in the network. Given this notation for the average across (the inverse of)
posterior variances, we can write Ē[θ] = ωgθ and iterate to obtain that Ē(m)[θ] = ωmg θ for
each m ≥ 0. Thus, we can express the equality in (7) as

a∗(υ) = (1− λ)
[
1 + λωg + λ2ω2

g + · · ·
]
Eυ[θ]

=

(
1− λ

1− λωg

)
Eυ[θ],

(8)

where Eυ[θ] satisfies the equality in (5). Now, if we average the expression above over all
neighborhoods in the network, we obtain∫

υ∈Υg

a∗(υ) dυ =

(
1− λ

1− λωg

)∫
υ∈Υg

Eυ[θ] dυ

=

(
1− λ

1− λωg

)
ωg θ.

Therefore, in a BNE, each agent that belongs to a neighborhood υ wishes to match his
action to the objective

(1− λ)θ + λ

∫
υ∈Υg

a∗(υ) dυ =

(
1− λ

1− λωg

)
θ (9)
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By plugging the expressions in (8) and (9) into the expected loss function given by (3),
we obtain:

Eυ

[(
(1− λ)Eυ[θ]

1− λωg
− (1− λ)θ

1− λωg

)2
]

=

(
1− λ

1− λωg

)2

Varυ[θ],

where the conditional variance Varυ[θ] is given by the expression in (6). By combining
this with the expression in (4), we obtain the the social welfare loss function is given by

L(g) =

(
1− λ

1− λωg

)2 ∫
υ∈Υg

Varυ[θ] dυ.

Before proceeding further with the analysis, it is convenient to comment on one impor-
tant modeling requirement. In order to explore the role of the network on social welfare,
we need to consider that the set of possible networks Υg is finite. Intuitively, each neigh-
borhood υ contributes to the social welfare value by aggregating the information contained
in its members’ private signals. Then, the precision of the information aggregated in this
way is summarized by the posterior variance Varυ[θ]. With an infinite set of possible
neighborhoods, the posterior variances of the different neighborhoods can be aptly ag-
gregated using an average of posterior variances. But averaging over the neighborhoods’
posterior variances vanishes away the informative contribution of each neighborhood to
the social welfare value. In this sense, our research question becomes irrelevant with an
infinite number of possible networks.10 This is very intuitive: exploring the value (in
terms of information) that each neighborhood contributes to social welfare is not appeal-
ing with an infinite number of neighborhoods. Since we are interested in exploring how
the network structure affects social welfare, the analysis will restrict attention to finite
sets Υg of possible neighborhoods.

Another technical comment, related to the previous one, is also in order here. Recall
that our derivation of symmetric BNE has made use of the law of large numbers to
average expectations on the state over neighborhoods. Therefore, we must consider that
the number of neighborhoods, though finite, is sufficiently large for our formal arguments
to be appealing in the environment that we are studying. The analysis of higher-order
beliefs used in this paper builds on the approach followed, among others, by Morris &
Shin (2002), Angeletos & Pavan (2007), Hellwig & Veldkamp (2009), and Dewan & Myatt
(2008). As in these papers, the formal analysis used here also invokes the law of large
numbers.11

10Formally, if we have an infinite number of possible networks, then using our notation ωg for the
average of the (inverses) of posterior variances across neighborhoods, it can be verified from expression
(6) that

∫
υ∈Υg

Varυ[θ] dυ = σ2[1 − ωg]. In this case, the social welfare loss function can be expressed
as L(g) = σ2(1 − λ)2(1 − ωg)(1 − λωg)−2, where ωg does not depend on the network structure. As a
consequence, the network structure plays no role in determining the value of the social welfare.

11For applications where one considers instead a relatively small number of neighborhoods, the law
of large numbers cannot be reasonably invoked to compute averages of expectations on the state. In
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With the considerations above in place, under the restriction that the number of
neighborhoods in the network is relatively large but finite, the social welfare loss function
is given, as a function only of the model’s primitives, by the expression12

L(g) =

(
1− λ

1− λωg

)2 ∑
υ∈Υg

Varυ[θ], (10)

where
ωg = σ2

∑
υ∈Υg

1′ · Var[s(υ)]−1 · 1. (11)

The objective of the social planner is to choose the network function g so as to minimize
the social loss given by (10) above. Let us use γg = |Υg| to indicate the number of
neighborhoods in the social network described by g.

4 Main Results

Let us use s(υ) = (s1(υ), . . . , skυ(υ)) to account for the different signals that are included
in a restricted signal profile s(υ) observed in a neighborhood υ. Thus, we are using kυ to
indicate the number of signals available in neighborhood υ. Also, in accordance with the
earlier notation, I will use πj(υ) to indicate the inverse of the variance of the noise term
associated to sj(υ), for each j = 1, . . . , kυ and each neighborhood υ ∈ Υg. Thus, πj(υ)
indicates the precision of the corresponding signal in neighborhood υ.

The informative content of the signals available to a neighborhood υ can be conve-
niently described by the number

w(υ) := σ21′ · Var[s(υ)]−1 · 1,

which identifies sum of all the entries of the inverse of the variance-covariance matrix of
the signal profile s(υ) (weighted using the variance of the state of the world). Then, notice

these cases, keeping track of the higher-order beliefs that are required to characterize equilibria follows a
completely different approach. In particular, under certain conditions, one can make use of the iterated
application of a knowledge index matrix. The idea of using a knowledge index matrix to track individual
arbitrarily higher-order beliefs depending on the position of a relatively small number of agents in a
network was originally proposed by Calvó-Armengol & de Martí-Beltran (2009). An application of
the knowledge index matrix to information acquisition problems in small populations has been recently
provided by Jimenez-Martinez (2014).

12Formally, when the number of neighborhoods is finite, the social welfare expression obtained in (10)
is always an approximation to the actual one. In applications, though, the law of large numbers can be
reasonably invoked (and thus the derived implications are robust) when the number of neighborhoods is
large. The approximation that we are considering is more precise as the number of neighborhoods increase
(and, in the limit, the law of large of numbers gives us an exact account when the number of neighborhoods
tends to infinite). However, as argued earlier, considering an infinite number of neighborhoods would
make our research question irrelevant.
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that we can express the average of the inverses of the posterior variances of the state in the
network as ωg =

∑
υ∈Υg

w(υ). Intuitively, each w(υ) is simply a scalar that gives us some
information about the joint precision of the signal profile s(υ). Higher values of w(υ) are
associated to lower degrees of noise in the corresponding signals and, therefore, to more
informative signal profiles. The following lemma provides formally this implication.

Lemma 1. The scalar w(υ) = σ21′ · Var[s(υ)]−1 · 1 lies in the interval (0, 1/σ2) and it
increases (strictly) with the sum of the precision of all the signals observed in neighborhood
υ,
∑kυ

j=1 πj(υ).

To obtain our main insights about efficient information aggregation networks, I turn
now to derive a more tractable expression for the social welfare loss. From the expression
in (6), and under our normality assumptions, it follows that the posterior average of
posterior variances of the state across neighborhoods is given by∑

υ∈Υg

Varυ[θ] = σ2
(
γg −

∑
υ∈Υg

w(υ)
)

= σ2 (γg − ωg) .

Therefore, using the expression in (10) for the social welfare loss, the problem that the
social planner faces in order to design efficient networks can be neatly expressed as

min
g

L(g) := σ2(1− λ)2 (γg − ωg)
(1− λωg)2

, where ωg =
∑
υ∈Υg

w(υ). (12)

The problem in (12) above establishes the crucial incentives for the social planner to
design (interim) efficient networks. Before presenting the main results, let me briefly
make two comments on such a design problem.

First, notice that, by choosing the network function g, the planner chooses the number
of neighborhoods γg in the network. Yet, recall that we are ruling out from the analysis
the complete network (and, in general, very highly connected networks that yield small
numbers of neighborhoods) in order to consider a sufficiently large number of neighbor-
hoods. Furthermore, since

∑
υ∈Υg

Varυ[θ] = σ2 (γg − ωg) > 0, we must have also γg > ωg
as an internal condition of the social planner’s problem. Then, one approach that the
social planner can take solve the problem in (12) is to begin by choosing the average of
inverse variances ω∗g so as to minimize L(g) for a constant value of γg. After that, the so-
cial planner can decide on the best way to distribute the network neighborhoods in order
to achieve the desired ω∗g =

∑
υ∈Υ∗

g
w∗(υ). Following this approach, the next proposition

provides a key result to explore how the social planner designs the network after setting
the desired goal for the average of inverse variances ω∗g.

Proposition 1. The informational content of the collection of signals received in any
neighborhood υ ∈ Υg is strictly smaller than the aggregation of informational contents
obtained by splitting υ into any two disjoint neighborhoods, that is, w(υ) < w(τ) + w(δ)
for any τ, δ ∈ Υg such that υ = τ ∪ δ with τ ∩ δ = ∅.
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The informational content of a set of signals naturally increases when the number
of signals in the set increases, as can be derived directly from Lemma 1. However, in
principle it is unclear how the informational content of a fixed set of signals changes when
the neighborhoods through which the information is aggregated vary. Proposition 1 above
offers a type of “diminishing returns” result under which the final informational content
increases monotonically as we split neighborhoods into smaller neighborhoods. Larger
neighborhoods seem to feature a type of “congestion” to aggregate information. The
message conveyed here for security environments is that we want to split teams of security
analysts into smaller teams if we are interested in increasing the overall informational of
their private sources of information.

The result of Proposition 1 is very interesting to consider the strategies that one
would like to follow in order to design efficient information aggregation networks. Far
from obvious, it seems somehow surprising as it establishes that the overall informa-
tional content described by the term ωg always increases by separating neighborhoods
into smaller neighborhoods. Each of the resulting smaller neighborhoods receive accord-
ingly a smaller number of signals. The following corollary follows by combining some of
the insights provided by Lemma 1 and Proposition 1 above.

Corollary 1. For any network function g, the average of the inverses of the posterior
variances of the state ωg lies in the interval (ω, γg min {1, 1/σ2}), where the lower bound
ω is specified as:

ω :=

∑n
j=1 πj

1 + σ2
∑n

j=1 πj
.

The final insights of this paper on efficient information aggregation networks are pro-
vided by the following proposition. Since this paper focuses on networks with a relatively
high number of neighborhoods, the proposition now states explicitly this requirement.
From the expression for the social loss stated in (12) notice that more aggregate infor-
mative content (i.e., higher values of the variable ωg) raises welfare by lowering the term
(γg − ωg) but it harms welfare by raising the term 1/(1 − λωg)2. In principle, it is un-
clear which of the two effects dominates and the answer clearly depends on the level of
complementarity captured by λ ∈ (0, 1).

Proposition 2. Suppose that the number of neighborhoods in the network is no less than
some sufficiently large bound, γg ≥ γ. Then,

(i) for levels of strategic complementary either relatively low, λ ∈
(
0, 1

2n−ω

)
, or relatively

high, λ ∈
(

1
ω
, 1
)
, the optimal network is the connected line where the ω is the information

level that maximizes ωg =
∑

υ∈Υg
1′ · Var[s(υ)]−1 · 1, whereas

(ii) for intermediate levels of strategic complementarity λ ∈
(

1
2γ−ω ,

1
ω

)
the optimal net-

work is the highest connected possible network under the requirement that the number of
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resulting neighborhoods is γ.

Proposition 2 gives us sufficient conditions under which interesting “corner solutions” to
the planner’s problem described in (12) arise. In particular, the levels of complementarity
stated in (i) and (ii) of Proposition 2 guarantee that the social welfare loss function L(g)
is (strictly), respectively, increasing and decreasing in the variable ωg that summarizes
the informational content of all signals available to the agents.

As shown by Angeletos & Pavan (2007), the mechanisms behind the social value of
information are complex and they depend on two basic considerations. The insights that
one can draw about efficiency in the presence of public and private information rely very
much on the proposed efficiency benchmark. For an efficiency benchmark that uses ex-
ante utility, whether more information is always welfare-improving depends crucially on
whether equilibrium is efficient under both complete and incomplete information or only
under incomplete information. When equilibrium is efficient under both complete and
incomplete information, more information (either public or private) is always welfare-
improving.13 Our efficiency benchmark is quite different since it uses interim utilities
instead. Yet, in our setting, the presence of the network also introduces a dimension
where information can, somehow, be considered as (endogenously) “more or less public.”
If the number of neighborhoods is relatively small (so that the resulting network is highly
connected), then information becomes relatively more public as more agents have access
to a common set of signals. In this case, as shown by Proposition 1, the informational
content obtained from the aggregation of all signals is relatively low. On the other hand, if
the number of neighborhoods is large (so that the resulting network is poorly connected),
then the information content obtained from the aggregation of signals is relatively high
but the nature of the information available to the agents is mainly private. For instance,
in the case of the connected line network, agents have access only to two (on the extremes
of the line) or to three (in the neighborhoods not located on the extremes of the line)
signals.

Proposition 2 above establishes that when the agents wish to follow a course of action
very close either to the fundamental parameter or to the actions followed by other agents,
the social value of information increases with the informational content obtained from the
aggregation of all private signals available in the population. In short, when the agents
wish to match only one of their goals (either the underlying state of the world or other
agents’ actions), improving social welfare requires higher aggregate levels of information
and that information received in each neighborhood has a more private nature. Here the
social planner is willing to sacrifice less volatility in the errors of the signals for higher
overall accuracy. Intuitively, in this case agents are able, without consulting much with
others, to forecast with relatively high precision the parameter. Recall that even when

13As argued by Angeletos & Pavan (2007), this is the case because equilibrium coincides with the
solution to the planner’s problem. Then, following an argument similar to Blackwell’s Theorem, any
source of additional information is welfare-improving.
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only aligning actions matters, a precise forecast of the parameter indirectly helps agents
to forecast better other agents’ actions.

On the other hand, when the agents wish to match simultaneously both of their goals,
social welfare increases as the informational content that results from the aggregation of
all private signals available in the population lowers and, at the same time, the nature
of the information available in each neighborhood becomes more public. The intuition
in this case is that the population, as a whole entity (represented by the social planner),
prefers to have less but more public information so that, in average, agents meet both of
their incentives. In other words, the social planner prefers less volatility in the errors of
the signals errors at the expense of lower overall accuracy.

5 Concluding Comments

This paper has explored the design of (interim) efficient networks in environments where
decision-makers are connected through a network and where all of them (commonly)
feature both a fundamental motive and a coordination motive in their preferences. Inves-
tigating this topic is interesting when one considers networks with a finite but relatively
high number of neighborhoods. Otherwise, the problem turns out to be either irrele-
vant (when the number of neighborhoods tend to infinity so that the contribution of
each neighborhood to the social value of information vanishes) or intractable (when the
number of neighborhoods is relatively small so that the law of large numbers cannot be
reasonably invoked to obtain a closed expression of equilibrium actions). In addition, the
research question addressed here remains interesting when one uses an interim efficiency
benchmark. Using the ex-ante efficiency approach instead, one would obtain directly that
the efficient network is the one with the highest possible connectivity. In our model, such
a network would have a number of neighborhoods equal to the minimum bound γ. The
reason behind this implication is that, for the case of beauty contest preferences, ex-ante
efficiency requires the central planner to solve the same problem that faces each agent.
As a consequence, any additional source of information would be welfare-improving.

Under the conditions above, this paper has shown that, when the levels of comple-
mentarity in actions are either low or high, efficient networks are characterized by a large
number of neighborhoods and by low levels of connectivity. The connected line network
arises as the efficient network under the requirement that networks are minimally con-
nected. When, the levels of complementarity in actions are intermediate, efficient networks
feature a relatively small number of neighborhoods and high levels of connectivity. The
implications of this paper are useful to provide efficiency recommendations for networks of
security analysts that are coordinated by a central institution under the requirement that
such an institution can access the pieces of private information available to the analysts.

A natural extension of the setting explored here would be that of considering sub-
stitutive actions as well. This possibility seems reasonable in certain contexts but it is
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perhaps not very appealing in security environments where coordination helps to prevent
security threats. At a more general level, understanding the social value of information
when information can be aggregated only locally within neighborhoods in networks, under
different efficiency benchmarks and preference specifications, remains an interesting and
rather unexplored question.

15



Appendix

Proof of Lemma 1. Under our normality assumptions, we have

Var[s(υ)] =


σ2 + π−1

1 (υ) σ2 · · · σ2

σ2 σ2 + π−1
2 (υ) · · · σ2

...
... . . . ...

σ2 σ2 · · · σ2 + π−1
kυ

(υ)

 = σ21 · 1′ +D,

where D is the diagonal matrix D = diag
(
π−1
j (υ)

)
j=1,...,kυ

that contains the variances of
the noises of the signals observed in neighborhood υ. Notice that

D−1 =


π1(υ) 0 · · · 0

0 π2(υ) · · · 0
...

... . . . ...
0 0 · · · πkυ(υ)

 .

Using a version of the Sherman–Morrison’s formula to compute the inverse of a sum of
matrices, (see, e.g., Sherman & Morrison (1950) and Henderson & Searle (1981)), we
obtain

Var[s(υ)]−1 = D−1 − σ2

1 + σ21′ ·D−1 · 1
[
D−1 · 1 · 1′ ·D−1

]
.

It follows that
σ2

1 + σ21′ ·D−1 · 1
=

σ2

1 + σ2
∑kυ

j=1 πj(υ)

and

[
D−1 · 1 · 1′ ·D−1

]
=


π2

1(υ) π1(υ)π2(υ) · · · π1(υ)πkυ(υ)
π2(υ)π1(υ) π2

2(υ) · · · π2(υ)πkυ(υ)
...

... . . . ...
πkυ(υ)π1(υ) πkυ(υ)π2(υ) · · · π2

kυ
(υ)

 .

By doing the algebra, it then follows that

Var[s(υ)]−1 =
1

1 + σ2
∑kυ

j=1 πj
×

π1 + σ2
∑

j 6=1 π1πj −σ2π1π2 · · · −σ2π1πkυ
−σ2π2π1 π2 + σ2

∑
j 6=2 π1πj · · · −σ2π2πkυ

...
... . . . ...

−σ2πkυπ1 −σ2πkυπ2 · · · πkυ + σ2
∑

j 6=kυ πkυπj

 ,

where the arguments (υ) have been conveniently dropped to simplify the expression.
Therefore, in order to obtain a closed expression for the scalar w(υ) = 1′ · Var[s(υ)]−11,
we need to aggregate all the entries of the matrix obtain above. We obtain
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w(υ) =

∑kυ
j=1 πj(υ)

1 + σ2
∑kυ

j=1 πj(υ)
∈ (0, σ−2). (13)

We observe directly that higher values of the (additive) aggregation of the precision of
the signals

∑kυ
j=1 πj(υ) received in neighborhood υ determine higher values of the scalar

w(υ).

Proof of Proposition 1. Let us use πυ =
∑kυ

j=1 πj(υ) as a shorthand notation for the
sum of the precision of the signals observed in a neighborhood υ ∈ Υg. Consider a
neighborhood υ and suppose that we split it into two disjoint neighborhoods τ, δ. Thus,
we are considering υ = τ ∪ δ with τ ∩ δ = ∅. First, notice that πυ = πτ + πδ. Secondly, it
follows from the expression (13) obtained in the proof of Lemma 1 that

w(τ) + w(δ)− w(υ) =
πτ

1 + σ2πτ
+

πδ
1 + σ2πδ

− πτ + πδ
1 + σ2(πτ + πδ)

=
σ2πτπδ(2 + σ2πτ + σ2πδ)

(1 + σ2πτ )(1 + σ2πδ)[1 + σ2(πτ + πδ)]
> 0,

as stated.

Proof of Corollary 1. First, note that it follows directly from the result in Proposition
1 that ωg > w([0, 1]) for any network function g. From the result shown in Lemma 1, we
know that w([0, 1]) =

∑n
j=1 πj

/(
1 + σ2

∑n
j=1 πj

)
.

Secondly, from the result obtained in Lemma 1, it follows that each w(υ) converges to
1/σ2 as the signals increase arbitrarily their precision, that is, when all πj tend to infinity.
Therefore, for any network function g, the term ωg cannot exceed γg/σ

2. In addition,
since

∑
υ∈Υg

Varυ[θ] = σ2 (γg − ωg) > 0, we must have also γg > ωg. By combining both
requirements, we obtain that ωg cannot exceed γg min {1, 1/σ2}, as stated.

Proof of Proposition 2. From the optimal network design problem in 12, we observe
that

∂L(g)

∂ωg
=

(1− λ)2σ2

(1− λωg)4

[
1− λωg

][
(2γg − ωg)λ− 1

]
.

Therefore, it follows that

∂L(g)

∂ωg
> 0 ⇔ either A: λ < 1/ωg and λ > 1/(2γg − ωg)

or B: λ < 1/ωg and λ > 1/(2γg − ωg);
∂L(g)

∂ωg
< 0 ⇔ either C: λ > 1/ωg and λ > 1/(2γg − ωg)

or D: λ < 1/ωg and λ < 1/(2γg − ωg).
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We proceed with the proof by studying each of the conditions stated in A–D above.
A: In this case, we have λ ∈

(
1/(2γg − ωg), 1/ωg

)
, which is a well-specified interval

under the restrictions that ωg and γg must satisfy. Since the loss function L(g) is always
increasing in this case, it follows that efficient networks are achieved when ωg = ω and
the set of signals is distributed into as few neighborhoods as possible. Thus, the number
of resulting neighborhoods must equal the lower bound γ.

B: In this case we must have λ ∈
(
1/ωg, 1/(2γg−ωg)). Yet, this is not a well-specified

interval under the requirement ωg ≥ γg.
C: In this case, we have λ < min

{
1/ωg, 1/(2γg − ωg)

}
= 1/(2γg − ωg). Since the

loss function L(g) is always decreasing in this case, it follows that efficient networks are
achieved when ωg = ω and the set of signals is distributed into as many neighborhoods
as possible. Under the restriction that the network is minimally connected, this can only
be the case for the connected line network. For this network, we have γg = n.

D: In this case, we have λ > max
{

1/ωg, 1/(2γg − ωg)
}

= 1/ωg. Since the loss func-
tion L(g) is always decreasing in this case, it follows that efficient networks are achieved
when ωg = ω and the set of signals is distributed into as many neighborhoods as possible.
As in case C above, under the restriction that the network is minimally connected, this
can only be the case for the connected line network. For this network, we have γg = n.

Then, the results stated in (i) and (ii) of the proposition follow directly by combining
the requirements and implications stated in A–D above.

18



References

Allen, F., Morris, S. & Shin, H. S. (2006), ‘Beauty contest and iterated expectations in
asset markets’, Review of Financial Studies 19, 720–752.

Angeletos, G.-M. & Pavan, A. (2004), ‘Transparency of information and coordination
in economies with investment complementarities’, American Economic Review: AEA
Papers and Proceedings 94, 91–98.

Angeletos, G.-M. & Pavan, A. (2007), ‘Efficient use of information and social value of
information’, Econometrica 75, 1103–1142.

Calvó-Armengol, A. & de Martí-Beltran, J. (2009), ‘Information gathering in organiza-
tions: Equilibrium, welfare, and optimal network structure’, Journal of the European
Economic Association 7(1), 116–161.

Dewan, T. & Myatt, D. P. (2008), ‘The qualities of leadership: Direction, communication,
and obfuscation’, American Political Science Review 102(3), 351–368.

Hellwig, C. & Veldkamp, L. (2009), ‘Knowing what others know: Coordination motives
in information acquisition’, Review of Economic Studies 76, 223–251.

Henderson, H. V. & Searle, S. R. (1981), ‘On deriving the inverse of a sum of matrices’,
Siam Review 23(1), 53–60.

Jimenez-Martinez, A. (2014), ‘Information acquisition interactions in two-player quadratic
games’, International Journal of Game Theory 43, 455–485.

Keynes, J. M. (1936), The General Theory of Employment, Interest, and Money, MacMil-
lan, London.

Morris, S. & Shin, H. (2002), ‘The social value of public information’, American Economic
Review 92(1521-1534).

Sherman, J. & Morrison, W. J. (1950), ‘Adjustment of an inverse matrix corresponding to
a change in one element of a given matrix’, Annals of Mathematical Statistics 21, 124–
127.

19




