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Abstract  

This paper studies the evolution of beliefs of a group of Bayesian updaters 
who are connected through a social network that enables them to listen to 
the opinions of others. Each agent observes a sequence of private signals 
about the value of an unknown parameter. In addition, the agent receives 
private messages from others according to her connections in the network. 
A message conveys some information about the signal observed by the 
sender. Both signals and messages are independent and identically 
distributed across time but not necessarily across agents. Messages cannot 
be transmitted through indirect connections in the network. We first 
characterize the long-run behavior of an agent's beliefs in terms of the 
relative entropies of the conditional distributions of signals and messages 
available to the agent. Then, under some mild assumptions on the 
distributions of signals and messages, we identify a condition under which 
the agents reach a consensus in their opinions even when they begin with 
different priors. Finally, in contrast with most results in the existing 
literature, we show that a consensus need not be reached in a strongly 
connected network.  

Resumen 

Este artículo estudia la evolución de las creencias de un grupo de agentes 
Bayesianos que están conectados a través de una red social, que les 
permite escuchar las opiniones de otros. Cada agente observa una 
secuencia de señales privadas sobre el valor de un parámetro desconocido. 
Además, el agente recibe mensajes privados de otros agentes según sus 
conexiones en la red. Un mensaje contiene información sobre la señal 
observada por el emisor. Tanto señales como mensajes son independientes 
e idénticamente distribuidos a lo largo del tiempo, pero no necesariamente 
entre agentes. Los mensajes no se pueden transmitir a través de 
conexiones indirectas en la red. Primero caracterizamos el comportamiento 
de largo plazo de las creencias de un agente en términos de las entropías 
relativas de las distribuciones condicionales de señales y mensajes 
disponibles al agente. Entonces, bajo algunos supuestos leves sobre las 
distribuciones de señales y mensajes, identificamos una condición bajo la 
cual los agentes alcanzan un consenso en sus opiniones incluso cuando 
comienzan con creencias distintas. Finalmente, a diferencia de la mayoría 
de resultados disponibles en la literatura, mostramos que un consenso 
puede no alcanzarse en una red fuertemente conectada. 
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Abstract

This paper studies the evolution of beliefs of a group of Bayesian updaters who are connected
through a social network that enables them to listen to the opinions of others. Each agent
observes a sequence of private signals about the value of an unknown parameter. In addition,
the agent receives private messages from others according to her connections in the network.
A message conveys some information about the signal observed by the sender. Both signals
and messages are independent and identically distributed across time but not necessarily across
agents. Messages cannot be transmitted through indirect connections in the network. We first
characterize the long-run behavior of an agent’s beliefs in terms of the relative entropies of
the conditional distributions of signals and messages available to the agent. Then, under some
mild assumptions on the distributions of signals and messages, we identify a condition under
which the agents reach a consensus in their opinions even when they begin with different priors.
Finally, in contrast with most results in the existing literature, we show that a consensus need
not be reached in a strongly connected network.
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1 Introduction

Most individual and social decisions rely on the beliefs that agents form about economic and

political variables based on the information they receive from neighbors, friends, coworkers, local

leaders, and political actors. Social networks are primary channels that carry news, information,

and opinions about products, job vacancies, and political programs. Coordinating decisions when

payoffs depend on an unknown underlying parameter requires agents to have beliefs that are

not too different.

Suppose that a group of agents start with different priors, that each agent observes over

time a sequence of private signals about the parameter, and that, in addition, she receives,

according to her connections in the network, some information about the private signals that

others observe. Under which conditions on the network structure will the agents eventually

have similar beliefs about the parameter value? To answer this question, we develop a tractable

benchmark to study the dynamics of belief formation when agents receive private information

about the parameter from an external source and, at the same time, there is communication

between connected agents. We choose the notion of consensus of beliefs, defined as obtaining

common limiting beliefs for all agents, as our criterion of what constitutes similar beliefs. We

remark that this notion of consensus does not rely on any ex-ante probability assessments over

histories leading to common limiting beliefs.

To illustrate the importance of having similar beliefs in coordinating decisions and making

efficient outcomes possible, consider the following example, based on an example from Martin

W. Cripps, Jeffrey C. Ely, George J. Mailath, and Larry Samuelson (2008). Suppose that

two agents, i = 1, 2, play the following investment game. First, nature chooses a parameter

θ ∈ {θa, θb} and each agent i assigns a prior probability qi ∈ [0, 1] to θa being the true parameter

value. After that, in each period t = 0, 1, 2, . . . , each agent observes privately a signal containing

some information about parameter θ and then chooses either action A or action B. Simultaneous

choices of A when the parameter is θa, or B when it is θb, gives a payoff of 1 to each. Lone choices

of A or B breaks joint investments opportunities and gives a payoff of −c, for some c > 0. Joint

choices that do not match the parameter gives the agents a zero payoff when the parameter

is θa and a payoff of −2c when the parameter if θb. Thus, in this coordination game, each

player must learn individually the appropriate course of action, without communicating with

the other. Figure 1 depicts these payoffs. Under what circumstances do there exist equilibria

of this investment game in which the agents coordinate their actions by choosing action A?
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Notice that action A will be optimal for an agent in some period t only if the agent assigns

probability at least c
1+2c =: q to θa being the true parameter value. Therefore, it is interesting

to know whether the priors qi will evolve over time so as to put eventually, both of them, at

least probability q to θa being the true parameter value. Otherwise, coordination in action A

will fail.

A B
A 1, 1 −c,−c
B −c,−c 0, 0

A B
A −2c,−2c −c,−c
B −c,−c 1, 1

Parameter θa Parameter θb

Figure 1.— Payoffs from a potential joint opportunity with actions A and B available to each agent.

The requirement stated above, however, is a necessary but not sufficient condition. To ensure

that both agents will indeed coordinate in action A, the signal process must be such that the

event that “both agents attach probability at least q to θa being the true value parameter”

become eventually commonly known by the agents.1 In short, successful coordination requires

that the agents (at least approximately) commonly learn the parameter value. That is, agent 1

must assign sufficiently high probability not only to θa, but also to the event that agent 2 assigns

high probability to this value, and to the event that agent 2 assigns high probability to the event

that agent 1 assigns high probability to θa, and so on. For a setting without communication

between the agents, as the one illustrated by the example above, but in which the agents begin

with common priors, Cripps, Ely, Mailath, and Samuelson (2008) show that (approximate)

common learning of the parameter is attained when signals are sufficiently informative and the

sets of signals are finite. This result follows regardless of the pattern of correlations between the

agents’ signals.

Unfortunately, recent research on epistemic conditions underlying solution concepts in game

theory shows that, under some circumstances, the presence of communication among the agents

precludes in general common learning of an event.2 The key feature that prevents common

1More precisely, if A denotes the set of histories at which both agents choose A, then at each history in A,
each agent must assign probability at least q to A. This is equivalent to the statement that the set of histories A
is q-evident according to the notion proposed by Dov Monderet and Dov Samet (1989). If, in addition, at each
history in A, each agent assigns probability at least q to θa being the true parameter value, then θa is common
q-belief, which turns out to be a sufficient condition for an equilibrium in which each agent chooses A.

2Following an observation by Rohit Parikh and Paul Krasucki (1990), Aviad Heifetz (1996) shows that com-
munication according to a stochastic protocol may prevent common knowledge. Using an infection argument
similar to that present in the email game of Ariel Rubinstein (1989), Frédéric Koessler (2001) generalizes this
result by showing that common knowledge of an event cannot be achieved when there is uncertainty regarding
whether messages reach receivers. Also, Jacub Steiner and Colin Stewart (2010) show that delayed communication
according to a stochastic protocol may destroy common learning.
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knowledge of an event in the presence of communication is the fact that messages are often

correlated across time. This is typically caused by the fact that the messages received by an

agent depend on the information available to the sender at the time when the message is sent.

Thus, if the probability with which a message is sent changes with the information that the sender

has, then messages are not independent over time. The negative implication of the correlation

over time of the information received by the agents is important. In a recent paper, Martin

W. Cripps, Jeffrey C. Ely, George J. Mailath, and Larry Samuelson (2012) show that common

learning can be precluded even when the private signals follow very simple time dependence

patterns. This feature, however, is not present in our model because signals are independent

over time and conditional distributions over messages are constant over time. Taken together,

both assumptions ensure that messages are independent over time.3 Therefore, it follows from

the result of Cripps, Ely, Mailath, and Samuelson (2008), that, if the agents have common priors,

and messages and signals are sufficiently informative, then (approximately) common knowledge

of the parameter is obtained.

However, situations in which the agents act as Bayesian updaters and yet end up with

posteriors that are not accurate (at least not completely) seems the rule rather than the exception

in practice. Otherwise, several important phenomena, such as propaganda, censorship, and

marketing, are difficult to rationalize. For instance, suppose that an agent receives information

from some media outlet with a well-known political bias. If the agent makes apriori assessments

about how strong the outlet’s arguments are likely to be, then she should be swayed toward

the media’s view only if the arguments were stronger that expected. But, by a large numbers

argument, listening to this media outlet should on average have no effect over her beliefs. This

result, however, seems in contrast with causal observation.

Our research question does not focus on learning issues but on the evolution of the agents’

posteriors when they use Bayesian updating rules. Accordingly, as indicated earlier, we do not

incorporate into our notion of consensus the possibility that the agents make ex-ante proba-

bilistic assessments about the histories underlying their beliefs. In particular, we allow them to

hold beliefs that are not accurate in the sense that there is a positive probability of deviating

substantially from the truth. In other words, no reference need be made regarding whether the

agents (approximately) learn the true parameter value in the long run neither whether they

ex-ante believe that their posteriors will eventually converge to the same limiting beliefs. In

3It is also important to note that, in our model, there is neither delayed communication nor uncertainty
regarding whether messages reach receivers.
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this respect, our notion of what constitutes similar beliefs is different from typical concepts of

agreement (see footnote 10 for further details) used in the learning literature.4 In particular,

our research question is different, though related, to that analyzed by Cripps, Ely, Mailath, and

Samuelson (2008).

By analyzing whether posteriors converge to some common limiting beliefs, we investigate

the conditions under which the necessary condition identified in the previous investment example

can be obtained. Our exercise is similar in spirit to the one carried out in his seminal paper on

consensus by Morris H. DeGroot (1974), in which he proposes the same notion of consensus as

we do so that the analysis ignores whether the agents converge to beliefs close to the truth.5

But our approach is quite different from that pursued in a recent paper by Benjamin Golub

and Matthew O. Jackson (2010) on “wise” networked societies, in which they ask under which

conditions will all agents converge to hold beliefs close to the true parameter value.

Our model is as follows. A set of agents begin with imperfect (and possibly asymmetric)

information on an unknown parameter. Over time, each of them receives information about the

parameter from some private external source and, in addition, they communicate according to

an exogenous (possibly directed) social network.

More specifically, we consider two possible parameter values. Each agent (1) observes a

sequence of private signals and (2) receives a sequence of private messages from each agent to

whom she has a direct (directed) link. We assume that messages cannot be transmitted through

indirect connections. We allow messages to be correlated with the sender’s signal so that the

receiver can obtain some information about the signal that the sender observes. Thus, at a

more intuitive level, the network describes conduits through which agents can listen to other

agents speak about the signals that they observe. An important feature of our model is that

the transmission of information between two agents is modeled using a sender-receiver protocol,

which is assumed to be constant over time.

We first characterize, in Proposition 1, an agent’s limiting beliefs in terms of a measure that

depends on the relative entropies of the distributions of signals and messages available to her

4For instance, in their classical justification of the common prior assumption, Leonard J. Savage (1954, p. 48),
and David Blackwell and Lester Dubins (1962) establish that Bayesian agents who observe the same sequences of
sufficiently informative signals will learn individually the true parameter value, and, as a consequence, they will
reach an agreement. Individual learning in this context requires that, conditioned on a parameter value, the agent
assigns probability one to the event that her limiting beliefs put probability one to that parameter value. Also,
Daron Acemoglu, Victor Chernouzhukov, and Muhamet Yildiz (2009) use a notion of agreement that requires
that the agents assign probability one to the event that their posteriors converge to the same limiting beliefs.

5Using the model of DeGroot (1974), Peter M. DeMarzo, Dimitri Vayanos, and Jeffrey Zwiebel (2003) consider
also the notion of consensus that we use in this paper. In addition, they analyze whether limiting beliefs are correct
in the sense of being close to an aggregate of the agents’ initial priors rather than to the true parameter value.
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in the network. Using this result, and under some mild assumptions on the distributions of

signals and messages, we identify a condition under which consensus is always attained for some

open set of networks. This condition, which we label as Inter Group Connectedness (IGC),

requires that, upon dividing the society into two groups according to the parameter value which

they consider ex-ante most likely, each agent who belongs to at least one of these groups has a

directed link to some agent in the other group. In Proposition 2, we show that if a consensus is

attained for a network, then such a network necessarily satisfies IGC. Conversely, we show that

there exists an open set of networks, satisfying IGC, for which a consensus is attained.

Turning to the literature, a number of papers have recently built upon the canonical model

proposed by DeGroot (1974) to explore the evolution of beliefs over time when agents can

listen to the opinions of others according to their connections in a social network. For instance,

Peter M. DeMarzo, Dimitri Vayanos, and Jeffrey Zwiebel (2003) study the beliefs finally held

by the agents under the assumption that they fail to adjust for repetitions of information over

time. Also, Golub and Jackson (2004) use DeGroot’s model to analyze the conditions on the

network structure under which the agents’ beliefs converge to the true parameter value. Our

paper is different from this branch of the literature because in DeGroot’s model the agents are

boundedly rational in the sense that they use a non-Bayesian updating rule. More precisely, an

agent updates her beliefs by the rule of thumb of weighting the beliefs of the agents to whom she

has a directed link. The network is then characterized by a transition matrix that describes the

evolution of the agents’ beliefs over time. In contrast, our paper considers Bayesian updating

from sequences of informative signals and messages.

Other recent work in which the agents update their beliefs according to some reasonable

rules of thumb includes Daron Acemoglu, Asuman Ozdaglar, and Ali ParandehGheibi (2010),

in which the agents meet pairwise and adopt the average of their pre-meeting beliefs. They

study how the presence of agents who influence the beliefs of others, but do not change their

own beliefs, interferes with the spread of information along the network. Although they do

not consider consensus specifically, our model allows for insights with a similar flavor since

some spread of beliefs among agents with different opinions is required for consensus. In our

model, consensus can be prevented when an agent does not listen enough to agents with different

opinions and, at the same time, is listened by others. Such an agent would play a similar role to a

“forceful” agent in the model by Acemoglu, Ozdaglar and ParandehGheibi (2010). The question

of whether consensus is attained under a non-Bayesian updating rule is analyzed by Daron

Acemoglu, Giacomo Como, Fabio Fagnani, and Asuman Ozdaglar (2010). They distinguish

6



between regular agents, who update their beliefs according to the information they receive from

their neighbors, and stubborn agents, who never update their beliefs. They show that consensus

is never obtained when the society contains stubborn agents with different opinions. Again, this

insight bears some resemblance with ours when the connections of some agent does not allow

her to change her opinion in the long run, e.g., if the IGC condition is not satisfied.

Another branch of the literature on learning in social networks considers that, in addition to

observing signals, the agents are able to observe their neighbors’ past payoffs or past actions. An

important contribution within these models of observational learning is the work of Venkatesh

Bala and Sanjeev Goyal (1998), in which the agents take repeated actions and can observe their

neighbors’ payoffs. They obtain consensus within connected components of the network since

each agent can observe whether her neighbors are earning payoffs different from her own. Daron

Acemoglu, Munther A. Dahleh, Ilan Lobel, and Asuman Ozdaglar (2011) consider that agents

can observe their neighbors’ past actions and focus on studying asymptotic learning, defined

as the convergence of the agents’ actions to the right action as the social network becomes

large. They provide conditions on the expansion of the network under which there is asymptotic

learning when private beliefs are either bounded or unbounded.

Finally, we emphasize that existing models on communication and learning, based on Bayesian

and non-Bayesian updating rules, typically lead to consensus when communication takes place

over a strongly connected network (e.g., Acemoglu, Dahleh, Lobel and Ozdaglar, 2008; Bala

and Goyal, 1998; DeMarzo, Vayanos and Zwiebel, 2003, Golub and Jackson, 2004; Acemoglu,

Ozdaglar and ParandehGheibi, 2009). Nevertheless, a strongly connected network need not

satisfy condition IGC in our model, as we show in Example 1, which could preclude consensus.

This difference can be explained by the fact that, in our set up, the information contained in

the messages does not flow in any period through indirect connections in the network. This

observation is particularly important since it shows that restricting communication to flow over

time only locally in the social network (i.e., within each pair of directly connected neighbors)

interferes with the spread of information so as to prevent consensus. Nevertheless, even though

we consider that the agents are somewhat “locally isolated” in the sense that they do not pass to

others the information they receive from their direct neighbors, the IGC condition is sufficient

for the spread of information among all agents. Thus, IGC seems important to identify influ-

ential agents in the presence of restrictions for the transmission of information through indirect

connections in the network.

The rest of the paper is organized as follows. Section 2 presents the model, Section 3

7



characterizes consensus, and Section 4 concludes. All the proofs are in the Appendix.

2 The Model

For any set Q, ∆(Q) denotes the set of all Borel probability measures on Q.

2.1 Information Processes

Time is discrete and indexed by t = 0, 1, 2, . . . . There is a finite set of agents N := {1, 2, . . . , n},

with n ≥ 3, who receive information from others according to an exogenously given (and possibly

directed) social network. The agents care about a parameter θ ∈ Θ := {θa, θb}, which is

selected by nature before period zero. Each agent i has a (subjective) prior distribution pi ∈

∆(Θ) that describes her ex-ante beliefs about the parameter. The realized parameter θ is not

observed directly by any agent. Instead, in each period t, each agent i observes privately a signal

realization sit ∈ S := {sa, sb} and receives privately a message mikt ∈M := {ma,mb} from each

agent k ∈ N . As it will be explained below, the message mikt only conveys information to agent

i about the signal skt observed by agent k. In principle, we allow each agent to receive messages

from herself as well. However, since an agent already observes her own signals, the information

conveyed by such messages is redundant. Also, even though an agent receives messages from

all agents, the social network restricts the amount of information that she receives from such

messages. The constraints that the network imposes on the information that the agents receive

from others are described more precisely in the next subsection. A message vector received by

agent i in period t is denoted by mit = (mikt)k∈N ∈Mn.

Conditional on θ, a stochastic process ζθ :=
{
ζθt
}∞
t=0

=
{

(ζθit)i∈N
}∞
t=0

generates the signal pro-

file st = (sit)i∈N ∈ Sn for each t and a stochastic process ηθ :=
{
ηθt
}∞
t=0

=
{

((ηθikt)k∈Ni)i∈N
}∞
t=0

generates the message profile mt = (mit)i∈N ∈ Mn2
for each t. For each θ ∈ Θ, the process ζθ

is independent and identically distributed across t.

For each period t, the joint conditional distribution over signal-message profiles is denoted by

πθ(s,m) := P (ζθt = s, ηθt = m), the marginal conditional distribution over the signals observed

by agent i is denoted by φθi (si) := P (ζθit = si), and the marginal conditional distribution over the

messages received by agent i from her neighbor k is denoted by ψθik(mik) := P (ηθikt = mik). We

use ζ and η, and φi and ψik, to denote, respectively, the corresponding unconditional stochastic

processes and unconditional distributions.

An important ingredient of our model is the communication protocol through which infor-

mation is transmitted between directly connected agents. Each agent i receives a message from
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each agent k ∈ N (that is, including herself) in each period t according to a pair of conditional

distributions σskik ∈ ∆(M), sk ∈ S. These distributions σskik (mik) := P (ηikt = mik | ζkt = sk),

sk ∈ S, are constant across t and their shapes capture the precision of the communication

transmitted from agent k to agent i about the signals observed by k.6 Thus, each agent learns

about the value of the parameter θ not only by observing her own sequence of signals but also

by obtaining some information about the signals that other agents observe. One way to inter-

pret communication in this model is by considering that each agent i listens, with some fixed

precision (or degree of informativeness) given by σskik , sk ∈ S, to the opinions about θ that each

agent k ∈ N forms from her own private signals.

In general, since the messages received by an agent from another depend on the signal that

the sender observes (and, thus, on the information that she has), messages should be correlated

across time. In our model, however, since conditional distributions over messages are constant

across time and signals are independent across time, messages are also independent over time.

Therefore, for each θ ∈ Θ, the process ηθ is also independent and identically distributed across t.

Furthermore, given the distributions σskik , sk ∈ S, the following consistency requirement relates

the process generating agent i’s messages received from agent k with k’s own signal process:

ψθik(mik) =
∑
sk∈S

φθk(sk)σ
sk
ik (mik), ∀θ ∈ Θ, ∀mik ∈M. (1)

For each pair of agents i, k ∈ N , we restrict attention to the class of distributions φθi and

σskik parameterized as follows. For each subscript α ∈ {a, b}, let φθαi (sα) = xi ∈ [1/2, 1] and

σsαik (mα) = yik ∈ [1/2, 1]. Thus, without loss of generality, we are assuming that signal sa (re-

spectively, sb) is more likely than signal sb (respectively, sa) under parameter θa (respectively,

θb). Analogously, we assume that agent i receives message ma (respectively, mb) more often than

message mb (respectively, ma) when agent k observes signal sa (respectively, sb). While the re-

striction to conditional distributions satisfying φθai (ma) = φθbi (mb) and σsaik (ma) = σsbik (mb) is

not essential for our results to follow, it simplifies greatly the analysis. With these parameteriza-

tions, we can compare in a very simple and neat way the informativeness of any two distributions

over signals (and of any two distributions over messages) using the classical order introduced by

David Blackwell (1951, 1953). A conditional distribution over signals associated to parameter

xi is at least as informative as a distribution associated to parameter x′i if and only if xi ≥ x′i.

Analogously, agent i receives from agent k at least as much information under yik than under y′ik

6Modeling communication between pair of agents connected in a network by means of a signaling or cheap
talk protocol has been recently considered, among others, by Jeanne Hagenbach and Frédéric Koessler (2010).
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whenever yik ≥ y′ik. Given this characterization of the degree of informativeness of signals and

messages, we will use from here onwards xi and yik to indicate, respectively, the precision with

which agent i receives information about parameter θ through her own signals and the precision

with which agent i listens to agent k speak about her signals. Let x = (xi)i∈N ∈ X = [1/2, 1]n

denote a signal-precision profile. By construction, this model does not consider neither strategic

information revelation nor strategic attention. Information transmission is exogenously given

by the network structure, as explained in more detail in the next subsection.

2.2 Communication Networks

The agents communicate, using the distributions σskik (sk ∈ S), through an exogenous social

network consisting of a set of directed links between pairs of agents. If yik = 1/2, then agent i

learns nothing about the signals received by agent k. We interpret this as agent i not listening

to the opinions of agent k about parameter θ and model this situation as agent i not having a

directed link to agent k. On the opposite extreme, if yik = 1, then agent i obtains full information

about the signals received by agent k, which we model as agent i having a directed link to agent k

with the highest possible intensity.7 Thus, our parameterization of the conditional distributions

over messages allows us to capture the patterns of communication among the agents through

an n× n matrix Y = [ yik ], where yik ∈ [1/2, 1] indicates the intensity with which agent i pays

attention to agent k. The interactions can be one sided, so that yik > 1/2 while yki = 1/2. We

set yii = 1 for each i ∈ N so that an agent transmits full information to herself. As mentioned

earlier, this information is redundant since agent i already observes her own signals.

Following the terminology used by Golub and Jackson (2010), we refer to Y as the interaction

matrix 8 describing the pattern of communication relations in the network. Information cannot be

transmitted through indirect (directed) connections in the network. Given a network described

by Y , let Ai := {k ∈ N \ {i} : yik > 1/2} denote the set of agents to whom agent i listens.

A directed path in the network described by Y is a sequence (i1, i2, . . . , iR) of distinct agents

such that yirir+1 > 1/2 for each r = 1, 2, . . . , R− 1. We say that the network described by Y is

strongly connected if it has a directed path from any agent to any other agent. Throughout the

7Note that, in the usual terminology of sender-receiver games, yik = 1/2 corresponds to a pooling strategy,
yik = 1 corresponds to a completely separating strategy, and each yik ∈ (1/2, 1) gives a partially separating
strategy.

8However, matrix Y is an object very different from the interaction matrix used by Golub and Jackson (2010).
In particular, their interaction matrix is stochastic while Y is not. Also, their interaction matrix plays the role of
a transition matrix to update beliefs while this is not the case in our model. Nevertheless, there are conceptual
similarities in the sense that an entry of both matrices captures the intensity with which an agent pays attention
to the opinions of another agent in the society.
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paper we shall consider only strongly connected networks. Let Y denote the set of all interaction

matrices that describe strongly connected networks.

2.3 Updating and Consensus

For each period t, let Zi := S × Mn denote the set of all signals and message vectors for

agent i and let Z := Sn×Mn2
denote the set of all signal-message profiles. A state consists of a

parameter and a sequence of signal-message profiles, and it is denoted by ω = (θ, {(st,mt)}∞t=0) ∈

Ω := Θ× Z∞. When convenient, we abuse notation by writing θ for the event {θ} × Z∞ ⊂ Ω.

A period-t history for agent i is a string ((si0,mi0), (si1,mi1), . . . , (sit,mit)) ∈ Zti and the

filtration induced on Ω by agent i’s histories is denoted by {Hit}∞t=0. The posterior belief of

agent i about parameter θ in each period t is given by the (Hit-measurable) random variable

µi(θ |Hit) : Ω → [0, 1]. For each agent i and each value of the parameter θ, the sequence

of random variables {µi(θ |Hit)}∞t=0 is a bounded martingale,9 which ensures that the agents’

posterior beliefs converge almost surely (see, e.g., Patrick Billingsley, 1995, Theorem 35.5).

Definition 1. A consensus is (asymptotically) reached in the society if the posterior beliefs of

all agents converge to the same value regardless of their priors, that is, if for each i ∈ N , each

pi ∈ ∆(Θ), and each θ ∈ Θ,

lim
t→∞

µi(θ |Hit) = q, (2)

for some q ∈ [0, 1].

Note that condition (2) says nothing about whether the agents’ beliefs approximate any “ob-

jective” or “true” beliefs about the parameter. Neither it imposes any conditions on probability

assessments over the set of histories at which beliefs converge to common limiting beliefs. In par-

ticular, as discussed in the Introduction, it does not require that the agents’ posteriors converge

to a belief close the true parameter value.10 That is, we allow that the agents’ limiting beliefs

be inaccurate in the sense that they put positive probability to deviating substantially from the

true parameter. As mentioned in the Introduction, this is motivated by our goal of studying the

evolution of beliefs rather than studying whether the agents learn or not true events.

9More formally, {µi(θ |Hit)}∞t=0 is a bounded martingale with respect to the measure on Ω, conditional on θ,
induced by the priors (pi)i∈N , the signal processes (ζθ)θ∈Θ, and the message processes (ηθ)θ∈Θ.

10Typical notions of individual learning and agreement used in the learning literature can be defined, using
the notation that we have introduced, as follows. Let P denote the measure on Ω induced by the priors (pi)i∈N ,
the signal processes (ζθ)θ∈Θ, and the message processes (ηθ)θ∈Θ, and let P θ denote the corresponding measure
conditional on θ. Then, individual learning requires that P θ ({ω ∈ Ω : limt→∞ µi(θ |Hit) = 1}) = 1 for each i ∈ N ,
and agreement requires that P ({ω ∈ Ω : limt→∞ µi(θ |Hit) = q for all i ∈ N}) = 1 for some q ∈ [0, 1].
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3 Results

3.1 Characterizing Belief Convergence

Given a value θ ∈ Θ of the parameter, we use throughout the paper θ′ to denote the other value

of the parameter, i.e., {θ′} := Θ \ {θ}. For each agent i ∈ N , let

Hθθ′
i :=

∑
si∈S

φθi (si) log

[
φθi (si)

φθ
′
i (si)

]
≥ 0 and Gθθ

′
ik :=

∑
mik∈M

ψθik(mik) log

[
ψθik(mik)

ψθ
′
ik(mik)

]
≥ 0 (3)

denote, respectively, the relative entropy (or Kullback-Leiber distance) of φθi with respect to φθ
′
i

and the relative entropy of ψθik with respect to ψθ
′
ik, for k ∈ Ai. Then, the function ξi : Θ → R

defined by

ξi(θ) := pi(θ)H
θθ′
i +

∑
k∈Ai

pk(θ)G
θθ′
ik

gives us an entropy-based measure of the weight that both the signal generating process ζit and

the message generating processes ηikt (k ∈ Ai) place on agent i’s belief that the true state is

θ (instead of θ′). The following proposition provides a characterization of the convergence of

agent i’s posteriors in terms of the weighted function of entropies ξi. This result is fairly general

and does not depend on our parameterization of the distributions φθi and σsiik.

Proposition 1. For each sequence {Hit}∞t=0 of filtrations, the convergence of agent i’s poste-

riors is characterized by (i) limt→∞ µi(θ |Hit) = 1 if and only if θ is the unique element of

argmaxθ∈Θξi, and (ii) limt→∞ µi(θ |Hit) = pi(θ) if and only if argmaxθ∈Θξi = Θ.

Suppose that an agent i ∈ N were restricted to using solely the signals that she observes to

update her beliefs (e.g., because she does not listen to anyone in the network, Ai = ∅). Then,

for a given value θ ∈ Θ of the parameter, application of Proposition 1 gives

lim
t→∞

µi(θ |Hit) = 1 ⇔ log

(
xi

1− xi

)
[2xi − 1][1− 2pi(θ)] < 0 ⇔ pi(θ) > pi(θ

′).

Thus, when an agent receives no information from the others, her long run beliefs are completely

determined by her own prior beliefs. Our goal in this paper is to study how the fact that agents

with different priors communicate through a strongly connected social network, specified by an

interaction matrix Y ∈ Y, affects the evolution of their posteriors and the achievement of a

consensus.

For each agent i ∈ N and the value θa of the parameter (chosen without loss of generality),

we set vi := 1 − 2pi(θa) so that vi ≤ 0 (respectively, vi ≥ 0) indicates that agent i believes

12



ex-ante that θa (respectively, θb) is a value at least as likely as θb (respectively, θa) for parameter

θ. Then, we can specify the priors of the society using the vector v = (vi)i∈N ∈ [−1, 1]n.

Let Na := {i ∈ N : −1 ≤ vi ≤ 0} denote the set of agents who believe ex-ante that θa is at

least as likely as θb and let Nb := {i ∈ N : 0 ≤ vi ≤ 1} denote the set of agents who believe

ex-ante that θb is at least as likely as θa. Thus, we split the society into two sets of agents,

those who are ex-ante in favor of θa (Na) and those who are ex-ante in favor of θb (Nb). We

assume that the agents’ priors are uniformly bounded away from the distributions that assign

probability one to either each of the two parameter values, and from the distributions that assign

the same probability (1/2) to both parameter values as well. Specifically, we assume that there

exist two intervals Va = [va, va] and Vb = [vb, vb], with −1 < va < va < 0 < vb < vb < 1, such

that vi ∈ Va for each i ∈ Na and vi ∈ Vb for each i ∈ Nb. Also, to make the problem interesting,

we impose that Na 6= ∅ and Nb 6= ∅ so that there is some heterogeneity in the agents’ priors.

For a pair of agents i, k ∈ N , we define

δi := log

[
xi

1− xi

]
[2xi − 1] ≥ 0 (4)

and

ρik := log

[
xkyik + (1− xk)(1− yik)
xk(1− yik) + (1− xk)yik

]
[2xk − 1][2yik − 1] ≥ 0. (5)

Under our parameterization of φθi , it follows from Proposition 1 that the product δivi measures

the speed of convergence for agent i’s beliefs which is due solely to the information that she

receives from her own signals. Also, under our parameterization of σskik and φθk, Proposition 1,

together with the consistency requirement in (1), implies that the speed of convergence of the

sequence {µi(θa |Hit)}∞t=0, which is due solely to the information that agent i receives from agent

k, is given by the product ρikvk. The following corollary follows then from Proposition 1 under

our parameterization of the distributions φθi and σsiik.

Corollary 1. A consensus in which all agents believe in the long run with probability one that

the value of parameter θ is θa (respectively, θb) is reached in the society if and only if for each

i ∈ N , and for each v ∈ [−1, 1]n such that vj ∈ Va for j ∈ Na and vj ∈ Vb for j ∈ Nb,

δivi +
∑

k∈Ai∩Na

ρikvk +
∑

k∈Ai∩Nb

ρikvk < 0 (respectively, > 0), (6)

where δi and each ρik are as defined in (4) and (5).

The result is intuitive. The long run behavior of an agent’s beliefs is affected by the influence

of all agents to whom she listens in the network, those whose ex-ante opinion she agrees on as

13



well as those with a different ex-ante opinion. Then, the final effect that determines the long

run behavior of her beliefs is given by the expression in (6), which turns out to be linear in the

agents’ priors.

3.2 A Necessary (and Almost Sufficient) Condition for Consensus

From condition (6), we observe that the achievement of consensus is closely related to the fact

that some agents can be influenced by agents with different priors. Roughly speaking, with

heterogeneous priors, consensus requires that some agents change their minds over time by

listening to other agents. Thus, a key condition for consensus is that each of the agents who

favor ex-ante at least one given parameter value has a directed link to at least one agent who

favors ex-ante the other parameter value. We label this condition as Inter Group Connectedness

(IGC). Specifically,

ICG: either each agent from Na has a directed link to at least one agent from Nb, or each agent

from Nb has a directed link to at least one agent from Na, or both.

Proposition 2. Suppose that a consensus is reached in the society for a network described by

some interaction matrix Y ∈ Y, then such a network satisfies IGC. Moreover, there exists an

open set X ′ ⊂ X of signal-precision profiles and an open set of interaction matrices Y ′ ⊂ Y,

satisfying IGC, such that a consensus in the society is reached for each (x, Y ) ∈ X ′ × Y ′.

It turns out that requiring that the network be strongly connected does not suffice for IGC,

as the following example illustrates.

Example 1. Suppose that n = 4, that Na = {1, 2} and Nb = {3, 4}, and consider the network

depicted in Figure 2.

1

2

3

4

y12

y13

y14

y21

y31

y34

y43

Figure 2.— A strongly connected network which does not satisfy IGC.
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The corresponding interaction matrix is

Y =


1 y12 y13 y14

y21 1 1/2 1/2
y31 1/2 1 y34

1/2 1/2 y34 1

 ,

where y12, y13, y14, y21, y31, y34, y34 ∈ (1/2, 1]. Notice that agent 1 has a direct link to each other

agent. Agent 2 has a direct link to agent 1 and indirect connections (via agent 1) to agents 3

and 4. Also, agent 3 has direct links to agents 1 and 4, and an indirect connection (via agent 1)

to agent 2. Finally, agent 4 has a direct link to agent 3, an indirect connection (via agent 3) to

agent 1, and another indirect connection (via agents 3 and 1) to agent 2. Therefore, each agent

has a directed path to each other agent so that the network is strongly connected. However,

this network does not satisfy IGC since agent 2 ∈ Na has no directed link to any agent in Nb

and agent 4 ∈ Nb has no directed link to any agent in Na. If follows from Corollary 1 that the

limiting beliefs of agent 2 will put probability one to θa while the limiting beliefs of agent 4 will

assign probability one to θb so that consensus is not attained.

4 Concluding Comments

We have assumed that there are only two possible values of the parameter. The intuition

underlying the results in Propositions 1 and 2 is compelling and general. With finitely many

parameter values, an agent’s limiting beliefs will depend, in a way totally analogous to that

stated in Corollary 1, on how she updates her beliefs by observing her own signals and by

receiving messages from others according to her network connections. Also, a connectivity

condition, analogous to IGC will be essential to determine whether or not consensus is attained.

That condition must require that each agent in the society has a directed link to at least one

agent who belongs to a group who ex-ante believes that at least one parameter value is the most

likely one. In other words, for at least one pre-specified parameter value, the connections in the

network must ensure that each agent may eventually change her mind by listening to others so

as to put, in the long run, probability one to that parameter value being the true one. This

group of agents will thus be a highly influential one.

As we discussed in the Introduction, we are ultimately interested in studying the evolution

of the agents’ beliefs without analyzing whether they eventually learn the truth. An interesting

open question that remains concerns whether the agents ex-ante believe that they will eventually

reach a consensus, without necessarily learning the truth. We believe that our model could be
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useful to address this question, perhaps by following an approach similar to that pursued by

Acemoglu, Chernozhukov, and Yildiz (2009). Another interesting extension of the model would

be that of endogenizing the listening structure. To follow this approach, more structure should

be added to the model so as to consider that the agents pursue the maximization of a payoff

that depends on the unknown parameter. Then, by characterizing listening structures that are

“stable,” one should obtain some insights into the formation of communication networks in a

dynamic framework of belief evolution.

Finally, the assumption that messages are not transmitted through indirect connections

seems more realistic in some environments than in others. For example, it is a natural assumption

in networks within formal organizations, in which, by regulation, information is only transmitted

between directly connected parts of the organization, or in networks in which there are physical

restrictions to the flow of indirect information. It seems less compelling, however, in informal

networks. It would be interesting to analyze the achievement of consensus if this assumption is

relaxed and some amount of information is allowed to flow through indirect connections.
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Appendix

Proof of Proposition 1. Given a sequence of filtrations {Hit}∞t=0, let αHit(si) := |{τ ≤ t : ζit = si}|

be the number of periods in which agent i has observed signal si before period t and let

βHitk (mik) := |{τ ≤ t : ηikt = mik}| be the number of periods in which agent i has received

message mik from agent k before period t. Fix a sequence {Hit}∞t=0. Application of Bayes rule

gives

µi(θ |Hit) =

1 +
pi(θ

′)

pi(θ)

∏
si

(
φθ
′
i (si)

φθi (si)

)αHit (si) ∏
k∈Ai

∏
mik

(
ψθ
′
ik(mik)

ψθik(mik)

)βHitk (mik)

−1

.

Since observed frequencies approximate distributions, i.e., limt→∞ α
Hit(si) = limt→∞[t φi(si)]

and limt→∞ β
Hit
k (mik) = limt→∞[t ψik(mik)], we have

lim
t→∞

µi(θ |Hit) =

1 +
pi(θ

′)

pi(θ)

∏
si

(
φθ
′
i (si)

φθi (si)

)φi(si) ∏
k∈Ai

∏
mik

(
ψθ
′
ik(mik)

ψθik(mik)

)ψik(mik)
∞−1

.

Therefore, studying the converge of µi(θ |Hit) reduces to studying whether the term

∏
si

[
φθ
′
i (si)

φθi (si)

]φi(si) ∏
k∈Ai

∏
mik

[
ψθ
′
ik(mik)

ψθik(mik)

]ψik(mik)

exceeds or not 1. By taking logs, this is equivalent to studying whether

∑
si

φi(si) log

[
φθ
′
i (si)

φθi (si)

]
+
∑
k∈Ai

∑
mik

ψik(mik) log

[
ψθ
′
ik(mik)

ψθik(mik)

]

exceeds or not zero. Then, using the fact that φi(si) =
∑

θ pi(θ)φ
θ
i (si) and ψik(mik) =

∑
θ pk(θ)ψ

θ
ik(mik),

together with the definitions of relative entropies in (3), we obtain that

lim
t→∞

µi(θ |Hit) = 1 ⇔ pi(θ)H
θθ′
i +

∑
k∈Ai

pk(θ)G
θθ′
ik > pi(θ

′)Hθ′θ
i +

∑
k∈Ai

pk(θ
′)Gθ

′θ
ik , (i)

and

lim
t→∞

µi(θ |Hit) = p(θ) ⇔ pi(θ)H
θθ′
i +

∑
k∈Ai

pk(θ)G
θθ′
ik = pi(θ

′)Hθ′θ
i +

∑
k∈Ai

pk(θ
′)Gθ

′θ
ik , (ii)

as stated.

Proof of Proposition 2. The first part follows trivially from Corollary 1. Suppose that the

network described by Y ∈ Y does not satisfy IGC. Then, some agent i ∈ Na does not have a
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link to any agent from Nb. Therefore, Ai ∩ Nb = ∅ and δivi +
∑

k∈Ai∩Na ρikvk < 0 for each

v ∈ [−1, 1]n such that vj ∈ Va for j ∈ Na and vj ∈ Vb for j ∈ Nb. It follows from Corollary

1 that limt→∞ µi(θa |Hit) = 1 for each sequence {Hit}∞t=0. In addition, some agent j ∈ Nb

does not have a link to any other agent from Na. Then, by an analogous argument, we have

limt→∞ µj(θb |Hjt) = 1 for each sequence {Hjt}∞t=0, so that condition (2) cannot be satisfied and

a consensus in the society is not reached.

The key to prove the second part is to show that, under IGC, we can always find an open

set of interaction matrices such that the limiting beliefs of all agents who favor ex-ante a certain

parameter value θ put probability one to the other parameter value θ′. Consider a network

described by some interaction matrix Y ∈ Y and suppose that it satisfies IGC. Suppose without

loss of generality that Ai ∩Na 6= ∅ for each i ∈ Nb.

If there is some agent j ∈ Na such that Aj ∩Nb = ∅, then it follows from Corollary 1 that

limt→∞ µj(θa |Hjt) = 1 for each sequence {Hjt}∞t=0. In this case, a consensus in the society

is reached only if each agent’s limiting beliefs put probability one to θa. Thus, we proceed by

showing that the interaction matrix Y can be chosen from an open subset of Y in a way such

that limt→∞ µi(θa |Hit) = 1 for each sequence {Hit}∞t=0 and for each i ∈ N . For each agent

i ∈ Nb, consider the function Fib : X × Y → R specified as

Fib(x, Y ) :=
∑

k∈Ai∩Na

ρik +

(
vb
va

)δi +
∑

k∈Ai∩Nb

ρik

 ,
where δi and each ρik are as defined in (4) and (5). It can be verified that

δivi +
∑

k∈Ai∩Na

ρikvk +
∑

k∈Ai∩Nb

ρikvk < 0

for each vector of priors v ∈ [−1, 1]n satisfying vj ∈ Va for j ∈ Na and vj ∈ Vb for j ∈ Nb if

and only if Fib(x, Y ) > 0. Since Ai ∩ Na 6= ∅, we can pick some (x, Y ) ∈ X × Y such that

Fib(x, Y ) > 0. Given the form of the functions in (4) and (5), we observe that this is achieved

by (a) choosing xi sufficiently close to 1/2 and, for each k ∈ Ai ∩Nb, either xk or yik sufficiently

close to 1/2, and (b) choosing yik sufficiently close to one for some k ∈ Ai ∩Na. Furthermore,

from (4), (5), and (6), we see that Fib is continuous, with respect to the Euclidean distance, for

each (x, Y ) in the interior of X × Y. Therefore, there is an open set Xib × Yib ⊂ X × Y such

that for each Fib(x, Y ) > 0 for each (x, Y ) ∈ Xib × Yib.

Now, for each agent i ∈ Na, consider the function Fia : X × Y → R specified as

Fia(x, Y ) :=
∑

k∈Ai∩Nb

ρik +

(
va
vb

)δi +
∑

k∈Ai∩Na

ρik

 ,
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where δi and each ρik are as defined in (4) and (5). It can be verified that

δivi +
∑

k∈Ai∩Na

ρikvk +
∑

k∈Ai∩Nb

ρikvk < 0

for each vector of priors v ∈ [−1, 1]n satisfying vj ∈ Va for j ∈ Na and vj ∈ Vb for j ∈ Nb if and

only if Fia(x, Y ) < 0. We can pick some (x, Y ) ∈ X × Y such that Fia(x, Y ) < 0. Given the

form of the functions in (4) and (5), this is achieved by (a) either choosing xi sufficiently close

to one or choosing xk and yik, for some k ∈ Ai ∩Na, sufficiently close to one, and (b) choosing

yik sufficiently close to 1/2 for each k ∈ Ai ∩ Nb. Furthermore, from (4), (5), and (6), we see

that Fia is continuous, with respect to the Euclidean distance, for each (x, Y ) in the interior of

X × Y. Therefore, there is an open set Xia × Yia ⊂ X × Y such that for each Fia(x, Y ) < 0 for

each (x, Y ) ∈ Xia × Yia. Then, by choosing X ′ × Y ′ :=
⋂
α∈{a,b}

⋂
i∈Nα Xiα × Yiα, we obtain a

consensus in the society for each (x, Y ) ∈ X ′ × Y ′ in which all agents believe in the long run

that θa is the true parameter value.

If Aj ∩Nb 6= ∅ for each agent j ∈ Na (that is, each agent from Na has a directed link to at

least one agent from Nb and each agent from Nb has a directed link to at least one agent from

Na), then the previous arguments can be easily adapted, with minor qualifications, to show that

there is an open and sense subset of X ×Y such that all agents’ limiting beliefs put probability

one to a particular pre-specified parameter value. All we needed to do is first pick a particular

θ as the parameter value which will be chosen with probability one under each agent’s limiting

beliefs. Then, we simply need to repeat the previous method with arguments totally analogous

to those used above.
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