Número 481 # DAVID MAYER # Divergences and Convergences in Human Development **OCTUBRE 2010** www.cide.edu Las colecciones de **Documentos de Trabajo** del **CIDE** representan un medio para difundir los avances de la labor de investigación, y para permitir que los autores reciban comentarios antes de su publicación definitiva. Se agradecerá que los comentarios se hagan llegar directamente al (los) autor(es). \bullet D.R. $^{\circledR}$ 2010. Centro de Investigación y Docencia Económicas, carretera México-Toluca 3655 (km. 16.5), Lomas de Santa Fe, 01210, México, D.F. Fax: 5727•9800 ext. 6314 Correo electrónico: publicaciones@cide.edu www.cide.edu Producción a cargo del (los) autor(es), por lo que tanto el contenido así como el estilo y la redacción son su responsabilidad. # Abstract I conduct a cross-country analysis of the human development index (HDI) components, income, life expectancy, literacy and gross enrolment ratios, using Gray and Purser's 1970-2005 quinquennial database for 111 countries. 1) A descriptive analysis uncovers a complex pattern of divergence and convergence for these components' evolution. Development is not a smooth process but consists of a series of superposed transitions each taking off with increasing divergence and then converging. 2) Absolute divergence/convergence for the HDI components is decomposed using simultaneous growth regressions including a full set of quadratic interactions between the HDI components, and indicators of urbanization, trade, institutions, foreign direct investment and physical geography. These are implemented, first, using three stage least squares, all of the nonexogenous independent variables fully instrumented, and second, as independent regressions with errors clustered by countries, again all nonexogenous variables instrumented. 3) A set of quantile regressions is run for the HDI component levels on the same variables (just the linear terms), again fully instrumented. Urbanization is a leading significant variable for human development indicators in both sets of estimates, stronger than trade, FDI and institutional indicators. These indicators act with ambiguous signs that may result from their distributive impacts, reducing their effectiveness. The results indicate that improving markets will have smaller returns than complementing them with institutions that can coordinate urbanization as well as investment in human capital. Urbanization itself can provide a concrete agenda for development involving all aspects of economic, political and social life as well as human development. # Resumen Utilizando la base de datos quinquenal para 111 países de Gray y Purser para el periodo 1970-2005, se llevan a cabo varios análisis comparativos entre países de la dinámica de los componentes del índice de desarrollo humano (IDH): ingresos, esperanza de vida, alfabetización y tasa bruta de escolarización. 1) Un análisis descriptivo revela un complejo patrón de divergencia y convergencia para la evolución de dichos componentes. El desarrollo no es un proceso suave, sino que consiste de una serie de transiciones superpuestas, cada una despegando con divergencia creciente y luego convergiendo. 2) Se descompone la divergencia/convergencia de los componentes del IDH utilizando regresiones de crecimiento simultáneas que incluyen todas las interacciones entre cada componente del IDH e indicadores de urbanización, comercio, instituciones, inversión extranjera directa (IED) y geografía física. Estas regresiones se implementan, en primer lugar, utilizando mínimos cuadrados en tres etapas, instrumentando todas las variables independientes no exógenas, y en segundo lugar, como regresiones independientes con errores agrupados por países, de nuevo instrumentando todas las variables exógenas. 3) Se estima un conjunto de regresiones por cuantiles para los componentes del IDH, con las mismas variables independientes (solamente términos lineales), plenamente instrumentadas. En ambos conjuntos de estimaciones, la urbanización resulta una de las variables explicativas más significativas para los componentes del desarrollo humano, más importante que comercio, IED e indicadores institucionales. Estos últimos indicadores actúan con signos ambiguos que pueden deberse a sus efectos distributivos, lo que reduce su eficacia. Los resultados indican que mejorar mercados tendrá impactos más pequeños que complementarlos con instituciones que puedan coordinar la urbanización así como la inversión en capital humano. En sí misma, la urbanización puede ofrecer una agenda concreta para el desarrollo que involucra todos los aspectos de la vida económica, política y social, así como del desarrollo humano. #### 1. Introduction What are the main determinants of divergence and convergence in human development? How is this process interlinked with economic growth? What makes some countries catch-up in the different dimensions of human development, and others not? These questions cut deep into the formulation of the theories and policies of economic growth. The initial theories of growth that emerged with the Neoclassical revolution and the demise of Keynesianism defined the concept of convergence. As Development Economics was thrown out, together with its appreciation of vicious and virtuous circles, nascent theories of economic growth based simply on extending the concepts of market equilibrium to the intertemporal, dynamic context predicted absolute convergence. It followed that economic convergence across countries would result from the implementation of free markets. Findings of convergence were thus considered to support free market policies. However, the initial empirical studies on income convergence (Barro, 1991) found absolute divergence instead, as was confirmed for the long-term by Pritchett (1997). Only the finding of conditional convergence has been robust¹, with absolute convergence confined to specific groups of countries. Essentially, what this means is that some variables move slower than income (or the variable of interest) and define its equilibrium levels. Variables that converge do not require much policy intervention while variables that move slowly, generating stratification or divergence, are reflecting the deeper inertias that define development and underdevelopment. Two decades of empirical investigations left behind long-held views that economic growth consisted fundamentally of a process of capital accumulation, finding that human capital, technology, institutions and economic geography to be essential components of the process. The main debate, nevertheless, is to what extent the growth process generated by markets is sufficient to bring about economic development, and where not, what the most effective complementary policies can be. The 1990 Human Development Report explicitly addresses these questions, and defines economic development as *human development*. Twenty years of change have followed, marked by globalization and events that have moved faster than our understanding of them. Gray and Purser's (2009) new database on human development indicators for 111 countries ranging quinquenially across the period 1970-2005 provides an opportunity to take stock of these issues. What has been the physiognomy of convergence and divergence? What variables have most intervened in improving income, life expectancy, literacy and gross enrolment ratio, the four components of the human development index? How has globalization impacted human development? Can a comparative evaluation be made of the relative importance of the main determinants of economic growth that current research proposes? Now, the fact of the matter is that this area of study, centered mainly on conditional convergence regressions, has produced a vast literature but nebulous results. A well-known investigation found that "the cross-country statistical relationship between long-run average growth rates and almost every particular macroeconomic indicator is fragile to small changes in the conditioning information set" (Levine & Renelt, 1992). This research also found "qualified support for the conditional-convergence hypothesis: a robust, negative correlation between the initial level income and growth over the 1960-1989 period when the equation includes a measure of the initial level of investment in human capital," implying, as mentioned above, that human capital is a slow moving variable reflecting the deeper inertias that define development and underdevelopment. Another well-known investigation used two million regressions to find that regional dummies, political variables such as rule of law or political rights, religion, market distortions and performance, types of investment, fraction of primary products in total exports or of GDP in mining, openness, type of economic organization, and colonial history were on the whole significant determinants of economic growth (Sala-i-Martin, 1997). What these studies show is that economic and human development are complex processes with historical, political, economic, institutional and geographical determinants that do not conform to some simple linear model. To throw light on the evolution of human development over the period 1970-2005, I first conduct a descriptive study of the indicators of human development and of some of the main explanatory variables. The main conclusion is that *economic development consists of a series of nonlinear transitions*, characterized by an initial period of divergence followed by a subsequent period of convergence. Next I conduct two sets of estimates on cross country differences that evaluate two different aspects of growth. One is an estimate on the divergence/convergence of the human development index (HDI) components. This estimate *decomposes* the (absolute) convergence coefficient for each of these four indicators, to find what explanatory variables contribute to their convergence or divergence. To take into account the complex
interaction which exists between the different economic variables, these regressions are fully instrumented. There are variables contributing to both convergence and divergence. Variables contributing to divergence are more critical to the growth process because they exhibit impact thresholds and increasing returns. The other set of estimates concentrates on differences in HDI component *levels* across countries. It consists of quantile regressions for the determinants of these levels across deciles of these same variables, in terms of the main explanatory variables. These regressions are also fully instrumented. The impact of the various determinants varies considerably across deciles. We compare the overall significance of the different explanatory variables for human development. Urbanization is a more significant and quantitatively important protagonist of development than trade, institutions or geography. Per capita income, life expectancy, literacy and enrolment ratios also affect each other considerably. In what follows we first discuss the data and results. Discussion and conclusions follow. #### 2. Data The main data set is Gray and Purser's (2009) extended quinquenial database on human the development index components, per capita income, life expectancy, literacy and gross enrolment ratios. This panel ranges over 111 countries over the period 1970-2005. This database is complemented with data from the World Development Indicators (2008)² and Polity IV (2009)³. The explanatory variables cover the following categories: institutions, trade, physical geography and economic geography. The first three categories are regarded by researchers seeking exogenous determinants of economic growth as the ultimate causes of economic growth. Researchers studying path dependence mainly study dynamics in human development (including the demographic transition), economic geography and technology. Human development indices are already included in the study. The only quinquennial indicator in economic geography found in the World Development Indicators is urbanization. There is unfortunately no suitable indicator for technology adoption. The set of explanatory variables that was included was therefore: trade⁴, FDI inflows, FDI outflows (these variables are thought to be indicators of globalization and technological change), executive constraints, democracy (these two from Polity IV), inflation and risk premium, landlocked, tropical, latitude, urban proportion of the population, population density (with agricultural land as denominator) and its rate of change. Including these population density variables accounts for the impact of endogenous fertility on human capital (e.g. Galor & Weil, 2000) and for such phenomena as the demographic dividend (Bloom, Canning & Sevilla, 2003a). Because of the devastating impact of AIDS in some very specific regions, a control for HIV was included, a dummy indicating countries for which more than 10% of the adult population was HIV positive in 2001 according to UNAIDS (2008). These countries are Botswana, Lesotho, Malawi, Mozambique, Namibia, South Africa, Swaziland, Zambia and Zimbabwe. Our instrument set includes correlates of long-term historical, political, economic, institutional and geographical determinants. These are legal origin (British, French, German or Scandinavian, from Levine, Loayza and Beck, 2000), geographic region (East Asia Pacific, East Europe and Central Asia, Middle East and North Africa, South Asia, Western Europe, North America, Sub Saharan Africa and Latin America and Caribbean), landlocked, tropical, latitude, area, the well known malaria ecology instrument (together with a dummy indicating its availability, Sachs, 2003), ethnic fractionalization in 1960 (from the Easterly and Levine (1997) dataset) and a time period dummy. To these instruments are added their quadratic interactions. For instance this allows the impacts of institutional, health and period variables to vary substantially across geographic regions, which themselves have very different histories. Note that landlocked, tropical and latitude are used as exogenous controls. Descriptive statistics for all of the variables are presented in Table 1. # 3. Descriptive analysis of the evolution of the HDI components, 1970-2005 The first descriptive analysis is an inspection of the evolution of the mean and dispersion (specifically, the standard deviation) of the component indicators of human development as well as urbanization, exports, imports, executive constraints and democracy by groups of countries. These groups are defined to represent human development or income levels. The evolution of the mean reflects on improvement across time, while the evolution of dispersion reflects on the presence of σ -convergence or divergence. This is the technique used by Grier and Grier's (2007) evaluation of the neoclassical model, which excels for its simplicity. The second descriptive analysis is an examination of decade phase diagrams of the HDI components showing all countries together with trend lines for their groups. This is a way of visually inspecting the Gray and Purser (2009) data for specific periods of time. # 3.1 Mean and dispersion of HDI components across country groups The groups of countries are defined according to initial data as follows. I took the 111 countries for which the HDI index is defined in the Gray and Purser (2009) data over the years 1970-2005, divided these into groups of 28 countries, except for the top group which is 27 countries, according to either log GDP per capita in 1970 or the HDI index in 1970. I therefore defined higher, upper middle, lower middle and lower income or HDI countries. On occasion the regional classification of countries used by the World Bank is used instead. As it happens, literacy is the variable that most closely follows the paradigm of absolute convergence. This is because the proportion of the population that can be literate has a natural upper bound (the whole population, actually 0.99 in our database), and because one of the factors of production of this good–teachers–consists of literate people themselves, independently of their level of income. The good itself–literacy–is not subject to much technological change, and fairly high levels of literacy have been obtained by many less developed countries. Between 1970 and 2005 mean literacy for the 111 countries increased from 0.62 to 0.83 and the standard deviation decreased almost linearly from 0.30 to 0.18. Even so, there is one difference with the usual paradigm, and this is that the initial phase of literacy growth is divergent. Figures 1.1 and 1.2 show the trajectories of mean and standard deviation for four groups of countries, defined according to income or human development levels. Each trajectory consists of eight points corresponding to the quinquennial series 1970-2005, that shift towards the right unless otherwise indicated. It can be observed that once mean literacy reaches a level of approximately 0.5, the dispersion of literacy across both income and human development groups diminishes as group mean literacy increases. Also, the value mean literacy tends to converge to is common across groups: the maximum possible value, when all of the population is literate. These trajectories are most clearly distinct across human development groups, showing this grouping defines the dynamic of the variable itself better than the income grouping. So far, this describes absolute convergence. However, the initial segments of the trajectories traversed by the lowest income or human development groups, when literacy is less than approximately 0.5, follow divergent trajectories, since as literacy increases so does its dispersion. This shows that literacy growth takes off in different countries at different times. The two qualitatively different segments of the trajectories, first divergence and then convergence, together constitute a transition, in this case from illiteracy to literacy. Let us now turn to log per capita GDP. In this case both the mean and standard deviation across the 111 countries increased, from 8.2 to 8.7, and from 1.27 to 1.41 respectively. However, a closer look shows Figures 2.1 is consistent with a long-term transition in income for the three highest groups, while the bottom group is trapped. The mean is not marked by improvement. Figure 2.2 also shows the bottom group trapped, but this time the top groups form a convergence club pattern, the top group apparently converging to a higher equilibrium, as the linear trend lines show. These conclusions are consistent with other well-known research. Quah (1996) finds evidence for a twin-peaked distribution. Bloom, Canning & Sevilla (2003b), find evidence for an income poverty trap. Castellacci (2006, 2008) finds evidence for three technology convergence clubs consistent with the theory in Howitt and Mayer-Foulkes (2005). Mayer-Foulkes (2006) finds evidence for three convergence clubs with divergence as well as transitions between them. Life expectancy shows a somewhat different evolution to per capita income or literacy. Mean life expectancy across the 111 countries increased from 58 to 68 years, while the standard deviation went from 10.1 to 11.1, partly because of the increasing life expectancy at the top end of the spectrum. Figures 3.1 and 3.2 shows a transition in which countries are eventually tending to similar life expectancy levels. If only the first five points of each trajectory are considered, from 1970 to 1990, the diagrams a transition ending with a convergence almost as sharp as for literacy. The transition is clearest by human development groups. However, around 1990 dispersion begins increasing in the three lower groups. Also, human development groups 1 and 2 have experienced a consistent increase in life expectancy since 1995, without an increase in dispersion. This changing pattern from convergence to divergence is
documented in a series of works. Moser, Shkolnikov & Leon (2005) show that life expectancy divergence replaced convergence in the late 1980's because of adult mortality differences. These results are supported by McMichael et al (2004). A trend from convergence to divergence in the late 20th century is also noted by Taylor (2009). Ram (2006) shows that, instead of the sharp convergence before the 1980's, after 1980 there is lack of convergence and an indication of "divergence," that is particularly marked during the 1990s. Also noted is substantial heterogeneity across the top and the bottom quartiles within each period. Increases in world life span inequality are also noted by Edwards (2010). Gross enrolment ratios represent the proportion of the schooling age population enrolled in primary, secondary, and tertiary education. Figures 4.1 and 4.2 show the evolution of these rates across time and across country groups. Because schooling follows discrete stages, enrolment ratios increase by waves across time. This is most clearly seen by income groups. Apparently higher education levels are undertaken when income resources permit, and when this occurs, a rise in dispersion follows. 19 out of 31 human development group 1 countries had reached enrolment ratios above 0.9 by 2005. The mean gross enrolment rate across the 111 countries is somewhat meaningless. It increased from 0.49 to 0.72, while the standard deviation fluctuated from 0.20 down 0.18 and then back to 0.19. # 3.2 Decade phase diagrams for the evolution of HDI components across country groups A closer examination of the evolution of HDI components across country groups is provided by decade phase diagrams that show levels of some indicator on the x axis and its change across a decade on the y axis. We begin again with literacy, because it illustrates a transition that begins with a period of divergence and ends with absolute convergence. Figure 5.1 shows decade phase diagrams across regional country groups beginning in 1970, Figure 5.2 beginning in 1995. The 1970 diagram shows Sub Saharan Africa and South Asia in the initial divergent stage of the literacy transition, with the rest of the regions already converging towards a literacy rate of 1. By 1995 all of the regions had reached the convergent phase of the transition. Log per capita income follows quite a complex process. Figure 6.1 illustrates income growth from 1980 to 1990 across income groups. Here the higher income group is divided into OECD and non-OECD countries. All of the groups except for the OECD countries are following a pattern of club convergence, while higher OECD countries appear to be experiencing a new phase of growth. This coincides with the initial phase of the wave of globalization that begun in the 1990's. Ten years later, in 1990 (Figure 6.2), all groups of countries are growing towards higher equilibriums, especially the non-OECD higher income group, which exhibits some divergence, but also the lowest income group. The full pattern is one of a sequence of transitions that begin with a divergent phase and then follow a convergent pattern that might exhibit club convergence or delayed entrance into later transitions. Figure 7.1, a life expectancy phase diagram for the 1970 to 1980 decade across geographical regions, shows a typical transition pattern. However, the most advanced regions are converging towards higher levels of life expectancy. By 1995, though (Figure 7.2) Sub Saharan Africa had experienced a life expectancy disaster (due to HIV and war). It was now converging towards a life expectancy level of only 55 years. Meanwhile South Asia was experiencing a new spurt of transition in life expectancy. A similar pattern occurred for the gross enrolment ratio. Figure 8.1 shows for the decade beginning in 1970 a convergent pattern for gross enrolment to levels of 0.8, except for divergence in Eastern Europe and Central Asia, and convergence to very low levels in South Asia. By the decade beginning 1995 (Figure 8.2) Western Europe and North America, East Europe and Central Asia, and Latin America and Caribbean have completed transition phases and are now converging to higher equilibriums. Meanwhile East Asia Pacific, Middle East and North Africa, and South Asia are entering transitional phases with lower initial levels. Figure 8 shows Sub Saharan Africa's life expectancy evolution over the full period 1970-1995 in more detail. The decades beginning 1970, 1975 and 1980 show divergent transitional phases. 1985, 1990 and 1995 instead show convergent phases, towards lower levels of dispersion, but also to lower steady state levels falling to 53 years in 1990 and then rising to 55 in 1995. Some countries display 15 years loses in life expectancy in the decade beginning 1995. # 3.3 Mean and dispersion of the main explanatory variables We now conduct a descriptive analysis of our main explanatory variables. One of the motivations is to see whether these variables offer particularly striking instances of divergence or convergence. We consider the evolution of the mean and dispersion of urbanization, exports, imports, executive constraints and democracy in the same way as we did for the human development indicators. Figure 9.1 shows a surprisingly intimate relation between urbanization and income levels. The trajectories of urbanization across lower and middle income groups form an almost perfectly integrated common trajectory of increasing means and standard deviations. Meanwhile, the higher income group also increased its urbanization rate, but at a lower level of dispersion between countries, perhaps because urbanization started much longer ago in this group. The same pattern is shown when this data is examined across human development groups (Figure 9.2) except that the lower middle human development group had relatively higher levels of urbanization, and the higher human development group decreased its dispersion in urbanization. Mean urbanization across the 111 countries increased from 0.42 to 0.56, dispersion increasing slightly from 0.24 to 0.56. Figures 10.1 and 10.2 shows a relation between income or human development levels and exports (as a proportion of income). Essentially, the dynamics correspond to the divergent phase of a long-term transition to higher levels of integration. However, looking at the trend lines, groups 1 and 3 are diverging faster, perhaps undergoing faster transitions. These groups of countries may be more intensely involved in globalization, representing the typical FDI partnership. Mean export rates across the 111 countries increased from 0.25 to 0.42, dispersion also increasing from 0.18 to 0.28. Imports (Figures 11.1 and 11.2) show a similar pattern to exports. Mean import rates across all countries increased from 0.27 to 0.45, while dispersion increased from 0.16 to 0.25. The main institutional variables we use are executive constraints and democracy from the Politi IV database. Figures 12.1 and 12.2 show the evolution of executive constraints. This follows a typical transitional pattern, with low mean and dispersion levels for low development, followed by increasing levels of both means and dispersions and then finally by a convergence trend toward high levels of executive constraints. The trajectories are not smooth and show quite a bit of variation. Mean executive constraints rises across the 111 countries from 3.33 to 5.25, the standard deviation increasing from 2.04 to 2.55. A similar pattern of transition is found for democracy in Figures 13.1 and 13.2. From 1975 to 2005 the mean across the 111 countries rises from 1.89 to 3.58 and the standard deviation from 3.97 to 4.17. In contrast to Acemoglu, Johnson and Robinson (2002, 2005), who propose that the critical feature of success in development had been the quality of the institutional framework inherited since colonial times, which they consider to be for all intents and purposes fixed across time, both executive constraints and democracy are clearly following a transition. Approximately three fourths of all countries are still in the divergent phase, with only the top fourth beginning to converge. It is illustrative to note that the case of literacy is the reverse: the bottom fourth is still in the divergent phase of the transition, while the top three fourths are in the convergent phase. Summarizing, the main feature revealed by the descriptive analysis is that human development, as well as its determinants, follow a series of superposed transitions that first take off with increasing divergence and then converge to a higher equilibrium. This very fundamental feature of development is almost completely missing in most theoretical models on economic growth. It could be said that vicious cycles keep transitions from beginning. Once they begin, they are characterized by virtuous cycles that reach a higher equilibrium. # 4. Decomposition of the convergence coefficient The descriptive exploration has shown that the evolution of the HDI components is characterized by a complex pattern of convergence and divergence. It consists of a series of superposed transitions that first take off with increasing divergence and then converge, smoothly in some exceptional cases and exhibiting more complexity and turbulence in others. Also, a series of events such as HIV, war, globalization, or regime changes in Eastern Europe and Central Asia, India, China, and so on, strongly affect the course of this evolution. In what follows we carry out an econometric analysis to investigate whether some causal variables are particularly related to convergence or divergence. #### 4.1 Estimation One way of investigating convergence and divergence is to introduce interaction terms in the convergence term in regressions on the rate of growth, of income for example. Here we extend this method, used for example in Aghion, Howitt and Mayer-Foulkes (2005), as follows. I consider that utility is approximately linear in life
expectancy, literacy and enrolment ratios, only per capita income needing to be considered as a logarithm. Thus in his section when we talk about HDI components log per capita income stands in place of per capita income. The convergence decomposition estimates are the following. For each HDI component consider the convergence decomposition regression $\frac{(HD_{it+5}-HD_{it})}{5} = \alpha HD_{it} + \beta X_{it}HD_{it} + \gamma X_{it} + \delta Z_{it} + \tau_{1970}D_{1970t} + \cdots + \tau_{2000}D_{2000t} + u_{it},$ where index t over periods 1970, 1975, ..., 2000 and index i ranges over 85 countries constituting a balanced panel (the explanatory variables do not cover the 111 countries). Here X_{it} are the explanatory variables to be instrumented, including the HDI components. The convergence coefficient is decomposed as $\beta X_{it} + \alpha$. It is necessary to include the independent terms X_{it} so as not to introduce omitted variable bias. We include a very limited number of controls Z_{it} that are not interacted with the convergence term, specifically the AIDS dummy, and the physical geography variables landlocked, tropical and latitude. These are therefore considered to have level but not growth effects⁵. D_{1970t} ... D_{2000t} are time period dummies⁶. u_{jt} are the stochastic terms. Finally α , β , γ , δ , τ_{1970} , ..., τ_{2000} are the coefficients. These regressions are evaluated simultaneously using 3SLS, and individually using clustered errors. Explanatory variables X_{it} are instrumented using the instruments listed in the data section. Exogenous variables Z_{it} of course intervene in the first stage regressions⁷. Inclusion of the quadratic interactions of the instruments is justified not only on the grounds mentioned above that the impacts of the various instruments can vary across geographic regions (these are also historical correlates), but also because the presence of the quadratic interaction terms of the independent variables calls for them. At the same time these interactions serve to augment the instrument set's dimension, allowing the simultaneous instrumentation of variables X_{it} , each of which can be considered endogenous. The only instruments providing variation across time are the period dummies. In a sense the panel estimates therefore provide an enriched cross section. For this reason it is to be expected that the error structure is clustered, showing correlation across time for each country. Clustered errors turn out to be the best estimates because the instrument set satisfies the Hausman and Sargan tests in this case. It also turns out that the 3SLS estimate results are not very different when the regressions for the HDI components are evaluated individually or simultaneously. # 4.2 Results For reference, Table 2 shows the results for the usual absolute convergence regressions using OLS, 3SLS and clustered error IV estimates. The instruments used are the full set of instruments. The results change considerably. While log GDP per capita is consistently divergent, the other HDI components appear to converge in the OLS case. However, only literacy is consistently convergent. Life expectancy becomes ambiguous when instrumented, while the IV clustered error estimates for gross enrolment ratio yields divergence. Our results on absolute convergence/divergence are supported by diverse research. Results on income divergence and on life expectancy convergence turning to divergence were already mentioned above (Bloom, Canning & Sevilla, 2003b; Castellacci, 2006, 2008; Mayer-Foulkes, 2006; Moser, Shkolnikov & Leon, 2005; McMichael et al, 2004; Taylor, 2009; Ram, 2006; Edwards, 2010). We turn now to the 3SLS and clustered error IV estimates. We examine whether the instrument set is weak in the sense that it is only indirectly related to the variables. Staiger & Stock (1997) develop an asymptotic distribution theory for instrumental variables regressions when the partial correlations between the instruments and the endogenous variables are close to zero. According to this study, F values above 10 obtained for the instrument sets in the first stage regressions imply acceptable modeling of the endogenous variables by the instruments. Table 3.1 shows that most of the independent variables achieve these levels of significance. Explanatory variables passing the weak instrument test are the HDI components themselves, urban, trade, executive constraints, democracy and population density. Only FDI inflows and outflows, rate of change of population density, inflation and risk premium have F values less than 10. These are not the main variables of interest and in any case their inclusion serves as controls for the other coefficients. Note however that confidence values obtained by these variables in the first stage regressions are all better than 1.3% (Table 3.2), and that the correlation of these independent variables with the non-interacted, original instrument set is not that low. Table 4 shows risk premium has two and FDI inflows and inflation have three instruments with correlations above 0.10. FDI outflows and rate of change of population density have 10 such instruments. Four sets of regressions were run for each of the 3SLS and clustered error IV methods. The first uses all of the variables. The next three in turn exclude democracy, executive constraints and urban. The reason is to examine the considerable interaction between these variables. Let us now examine the results of Hausman and Sargan tests⁸ for each of these runs in Table 5. In the case of 3SLS, the Hausman test fails for log GDP per capita and life expectancy, while the Sargan test fails for literacy and gross enrolment ratios. In the case of clustered errors IV both tests are successful in every case, except the Sargan test when urban is excluded. This strengthens our result on the robustness of the overall significance of the urban variable. Table 6 shows the coefficients of the 3SLS and IV clustered error convergence estimates with no independent variable excluded. As can be seen, there is a considerable variation in the pattern of significance and in the magnitude of the coefficients, implying that the biases introduced by error correlations are significant. The number of observations is 581 instead of 595 because trade data is missing for Cyprus, Jordan and Mauritius in 1970; Ethiopia, Mozambique and Panama in 1970 and 1975; Liberia in 1990 and Tanzania in 1970, 1975, 1980 and 1985. Table 7 shows the signs and significance pattern of the interacted coefficients and the non-interacted control variables. (The significance of the linear terms for explanatory variables that also appear interacted is not too relevant on its own.) The fact that the regressions are fully instrumented implies that the results are congruent with causal analysis. However, what really happening in the estimates is that a space of causes is being assigned according to correlation strengths. In so far as we believe that the set of independent variables do in fact proxy for causal factors, when a variable obtains significant coefficients this means it is significantly correlated with the causes, more significantly than other variables. While this may seem to be a weak causality statement, that is precisely what one means by statements such as "trade is an ultimate cause of economic growth". This means that such processes as learning, technological change, competition, and so on are especially connected with trade, or "trade is significantly correlated with the causal factors of economic growth". Similarly, urbanization is correlated with making living arrangements around modern production facilities and returns to scale or agglomeration externalities in education, health and production. In this sense, log GDP per capita is a robust factor of convergence for all HDI components. This means that it has decreasing returns. Its highest growth impact is at low levels of the HDI components. Literacy, by contrast is a divergence factor for income (except when urban is excluded) and life expectancy. This means that below a certain threshold lack of literacy causes backwardness, and above that threshold it has increasing returns. Its results for literacy and gross enrolment ratios interact with democracy, executive constraints and urban. Gross enrolment ratio contributes to convergence in literacy. Urban is a robustly significant factor of divergence for all four HDI components. On the other hand, when it is omitted the significance pattern of the remaining variables is altered significantly, especially for income and enrolment rate but also for literacy and life expectancy. Trade only gives significant, divergent, results for the gross enrolment ratio. Executive constraints yield income convergence so long as democracy is included, and robust divergence in the case of literacy. Its omission alters results for democracy and other variables. Democracy yields divergence in incomes so long as executive constraints are included, and divergence in enrolment ratios so long as urban is included. Its omission alters results for executive constraints and other variables. FDI inflows are a factor of convergence in literacy and enrolment ratios. FDI outflows are a factor of divergence in life expectancy and gross enrolment ratio and of convergence in literacy. Population density is a factor of divergence in life expectancy and convergence in enrolment rates. Population density growth is only significant when urban is excluded. Low risk premiums, (correcting for its negative quality by changing the signs) contribute to convergence in literacy and divergence in enrolment rates. Similarly, low inflation contributes to divergence in life expectancy, literacy and enrolment rates. Turning to non-interacted controls, AIDS decreases life expectancy and increases GDP per capita (through mortality). Landlocked reduces
income and life expectancy somewhat significantly, when no variables are omitted. Tropical reduces GDP and literacy. Latitude increases income, life expectancy and literacy but reduces the enrolment ratio. The results depend considerably on the set of independent variables. Nevertheless, one noteworthy result is that the correlation of urbanization with causal factors of economic and human development is robustly significant, and has increasing returns. # 5. Quantile regressions As mentioned in the discussion on divergence and convergence, we are interested in knowing what impact different variables have on economic performance at different levels of income. A quantile regression is therefore attractive. However, to choose the quantiles according to the levels of the human development components, it is necessary for these variables also to be the dependent variables. This is possible if we conduct a levels rather than growth estimate. Also, we need to instrument the independent variables so that we can estimate each of the components in terms of the others as well as all of the independent variables. The quantile levels we consider are 0.1 to 0.9. We include the time dummies only as instruments and not as controls because the quantile regressions do not converge when they are included, there probably are already too many constants in the estimates, one for each quantile level. Explanatory variables \mathbf{X}_t are substituted with their predicted values from the first stage of instrumental equations before running the quantile estimates⁹. $$HD_{it} = \boldsymbol{\alpha} \, \boldsymbol{X}_{it} + \boldsymbol{\beta} \boldsymbol{Z}_{it} + u_{it}.$$ #### 5.1 Results The results are shown in Tables 8.1 to 8.4. There are many significant results and they vary considerably at different quantiles. We examine the results graphically in Figures 14.1 to 14.4. To do so we plot the coefficients with a higher t value than 1.96 (corresponding to a significance of approximately 5%) multiplied by one standard deviation. This measures the impact of a change of one standard deviation on the target HDI component. This exercise does not include the physical geography variables, which are not subject to policy. However, these variables obtained significant results. Latitude was positive when significant for income and life expectancy, and negative for literacy. It was not significant for enrolment ratios. Latitude may be embodying omitted variables in technology, colonial history, and so on. Landlocked was positive when significant for income, mostly negative for life expectancy, positive for literacy and negative for enrolment ratios, in somewhat surprising results. Tropical was negative when significant for income, life expectancy, and enrolment ratios, and positive for literacy. Next come literacy and executive constraints, exhibiting decreasing impact with income level. Democracy, FDI inflows and inflation appear with negative signs. Figure 14.1 shows the quantile results for income. The variables with most impact are life expectancy and urbanization. Interestingly, life expectancy is not only affecting lower but also higher income levels. Work on the impact of health on income has previously emphasized the impact of health at lower income levels (for a summary see Bloom & Canning, 2008). The impacts at higher income levels may be related to transitions in the last 20 years. In contrast, urbanization affects middle income levels more strongly, making it a development tool for a wide range of underdeveloped countries. Figure 14.2 shows the results for life expectancy. Literacy, democracy, income, urbanization, trade, population and FDI inflows have a positive impact, while executive constraints, population growth, FDI outflows, and risk premium have a negative impact. The indicators exhibit a high degree of significance and all of the signs are the expected signs except perhaps for executive constraints. While some indicators show decreasing returns, others peak at medium high levels of life expectancy, such as urbanization, yet others at the top levels, such as enrolment ratios. Figure 14.3 shows the results for literacy. Enrolment ratio, life expectancy, FDI outflows, and executive constraints are the variables with the most consistent positive impact. Democracy, urbanization, trade (for lower levels of literacy) and population growth are the variables with the most consistent negative impact. Figure 14.4 shows the results for enrolment ratios. Literacy (for all levels of enrolment), urbanization and GDP (at lower levels of enrolment), democracy, population and trade (at intermediate levels), life expectancy, FDI outflows and population growth (for higher levels), are significant. #### 6. Discussion # 6.1 The most significant results What have we learned from our analysis? We can start by comparing the results of the two sets of estimates. Note that the convergence coefficients represent the marginal growth and the quantile estimates the marginal level that each independent variable can provide for each HDI component. Table 9 represents the signs and significance of the main coefficients in both sets of estimates. In the case of the convergence estimates the preferred run is the clustered error IV, with no variable omitted. Our significance measure is the sum of the number of significance stars obtained by each variable for each sign. This measure is closely correlated with just counting the number of times a variable is significant in each sign. In the case of quantile regression coefficients, we count the number of quantiles each variable was significant for, for each sign. We comment on the explanatory variables in the order of their total significance scores. Urbanization is the most significant. While it has some negative level effects, it has consistently increasing returns to growth (of HDI components). Literacy is always positive for levels and also has consistently increasing returns to growth. Income is equally significant, always positive in levels but always has decreasing returns to growth. Next is democracy, with positive and negative impact levels, but increasing returns to growth. Executive constraints follows, equally ambiguous in levels, but with some increasing and some decreasing returns to growth. Then comes life expectancy, always positive in levels, but with decreasing returns, like income. Trade is as significant as life expectancy, ambiguous in levels but with increasing returns. Low inflation has ambiguous level effects but increasing returns. FDI inflows also has ambiguous level effects but instead decreasing returns. Then come FDI outflows, population density and its growth, with ambiguous level and growth effects, although FDI outflows stands out for increasing returns. In order of significance, urbanization, low inflation, FDI outflows, literacy and democracy stand out for their *increasing returns to HDI component growth*. This is an aspect of growth that the prevalent emphasis on convergence has missed studying. Similarly literacy, urbanization, life expectancy, income and trade, in that order, stand out for their positive contributions to *levels* of the HDI components. There are several salient results. First is the consistent significance of urban proportion of the population. It affects income, literacy and gross enrolment ratio. All of its signs are positive and the magnitudes significant except for the literacy quantile estimate. This may be a reflection of migrant poverty. Given the consistent impact of cities, it is surprising that they do not impact life expectancy significantly. Perhaps they have significant positive and negative effects. Once one thinks about it, it is quite reasonable that cities play an important role in development, given that modern technologies and life are mainly city based. The reason the result is a surprise is that cities do not figure very much in development analysis or policy. Another surprise is that trade does not significantly impact income. It does significantly affect life expectancy levels. This may work through increasing the availability of myriad cheap technologies to improve health, as well as cheap food. It may also complement knowledge channels significantly associated here with life expectancy, such as literacy and gross enrolment ratio. Trade is also significantly associated with the gross enrolment ratio and its growth. Low inflation is positively associated with income levels and yields increasing returns in the other HDI components. As far as the set of exogenous variables are concerned, which include the "ultimate causes of growth," economic geography yields far more significant impacts than trade, FDI or institutions. This kind of geographic variable is not the kind of physical geography, exogenous variable that is included in ultimate causes. Instead, it refers to an important economic feature that is not well coordinated by the market system. While globalization has had large impacts, see for example Figure 14 showing how income divergence (or dispersion) peaks in 1990, its main features, trade and FDI, have not had the impact on the HDI components that might have been expected, according to the significance patterns found here. Another salient result is the ambiguity of the signs obtained by several important explanatory variables across HDI components. This raises important questions. Why do executive constraints, democracy, trade and FDI inflows and outflows and low inflation have such mixed impacts? Are there issues of distribution that muddy the impacts of these institutional, openness and macro management variables? The answer to this question might yield very productive insights. # 6.2 Towards objectivity The modern theory of economic growth began with the neoclassical growth model, in some sense a paradigm for the belief that markets are sufficient, or at least almost sufficient to direct economic growth. The model assumes
that competitive markets will allocate resources in such a way as to produce optimal economic growth and economic convergence. Because much of international economic life does in fact occur through markets, in evaluating cross-country growth the model serves as a benchmark to see whether in fact the model explains growth, or if not, what is going wrong. For example, Grier and Grier (2007) note that to be consistent with the absolute divergence in output levels – which they corroborate is occurring – it would be necessary to observe divergence in some of the determinants of income, such as physical and human capital, which they do not observe. However, they do observe divergence in technological levels. So this is the first point – markets might not distribute technology optimally. The neoclassical growth model can fail in two ways. If markets are a sufficient in principle, then deficiencies might originate in the context that defines them – institutions, (physical) geography and trade, this last being a basic policy choice. A considerable literature on economic growth focuses on these types of causes as the fundamental causes of long-term growth. Recently institutions seem to be the favorite of these causes (Rodrik and Subramanian, 2003; Rodrik, Subramanian and Trebbi, 2004). Alternatively, markets are insufficient for regulating and coordinating substantial classes of economic problems. For example, human capital investment is characterized by market failures. Technology is based on market power. Urbanization is based on externalities. In addition, public goods may be important. When such issues are strong enough, deficient market equilibriums may arise, corresponding to persistent poverty. The lower equilibriums constitute, by definition, traps that markets cannot dissolve. Convergence and divergence are linked with these two possibilities. When markets drive growth, convergence forces drive towards a new equilibrium. When markets are insufficient, bottlenecks arise that slow growth and generate divergence between countries. When and if the bottlenecks are overcome a transition emerges to an at least somewhat higher equilibrium. Our descriptive study shows that development consists of a series of such superposed transitions that first take off with increasing divergence and then converge to a higher equilibrium. The paradigm of smooth growth is inconsistent with the facts. The point is that the paradigm is deceptive. The reason is that conceptualizing growth as a smooth process makes it appear that it is susceptible to uniform policies. When a transition is ripe, it has increasing returns. When it is not, it may be impossible. Miracle growth, which ought to be the objective of development policy, is a transition from a low to a high steady state (see Wan's 2004 case histories of East Asia) involving transitions in production and in all aspects of economic life. It is not a simple, smooth process. Markets will often bump into transitions on their own and carry them forward. However, some transitions need public inputs and institutions. Aid programs in particular must recognize which the relevant transitions are. It is worth noting here that, at least conceptually, institutions fall into two kinds, those that simply establish the market system, and those that play an additional economic, political or social role. Providing public goods is not the least such role! *Objectively*, what types of institutions are needed when? It is of course possible that the market structure itself is impeded, creating a bottleneck, but not all bottlenecks are solvable through markets. On the contrary, these barriers have traditionally been the direct concern of public policy. The point is to let markets do what they do well and complement what they do not. Western society has done this throughout its capitalist history (with all the struggles this involves). The discussion of convergence has tended to link with a radical defense of the neoclassical growth model. However, what is needed is *objectivity*. When do markets carry forward the growth process, and when do they not? What are the best ways to trigger the transitions that are essential to development process? It is clear that well functioning markets are a part of this, but claiming they are the whole throws the baby out with the bathwater. Our convergence decomposition is a step towards objectivity. It shows that some variables contribute to convergence and others to divergence. In turn, the quantile estimates show that different variables are important at different levels of development. Moreover, several of the crucial variables are not particularly well driven by the market, such as urbanization, life expectancy, literacy and democracy. # 6.3 Urbanization as an intermediate objective for development Urbanization can be a particularly interesting intermediate objective for development for several reasons. First, it is necessary. It is part of the development path. Perhaps given modern technologies this includes making urban quality and externalities available to rural life. It certainly means bringing quality to urban life. Many things go into organizing cities well, such as transportation, provision of health and education, assigning areas for living and for industry and services, and so on. It requires political and social organization. Also, each city in each context will call for particular improvement objectives. These are all elements of a program of development. On the other hand they are concrete. A way must also be found for markets to determine some of the choices within some framework. Traditionally in underdeveloped countries what has happened is that urbanization has proceeded in a disorganized way that turns out to be very costly, governments following behind the facts. In so far as urbanization has been important, it is not mainly making markets work better that has achieved growth. Instead, it has been achieving the kind of social coordination that is successful at creating cities that has obtained additional growth, *together* with the coordination that markets can provide. The importance of this coordination and its institutional aspects is illustrated by the interaction we have shown exists between the variables urban, democracy and executive constraints. #### 7. Conclusions Our descriptive analysis and estimates show that economic growth and development follow a complex pattern of divergence and convergence. This can be thought to consist of a series of superposed transitions that first take off with increasing divergence (and increasing returns) and then converge. Each human development component follows its own set of transitions. These are also interlinked, in different ways at different stages. The estimates confirm the complex relations in divergence and convergence that exist in these indicators. Our estimates include indicators of the "ultimate causes of economic growth," institutions, trade and physical geography. They also include an indicator in economic geography, proportion of the urban population. The descriptive analysis has found evidence of divergence in the evolution of urbanization, exports and imports (Figures 9, 10, 11). It also found strong evidence that executive constraints and democracy follow an endogenous –if more complex– transition analogous to other variables such as literacy (Figures 1, 12, 13). The results show that economic geography is more significant to economic and human development than either trade or the market-institutional indicators (executive constraints, risk premium and inflation), and that, as any variable contributing to divergence, has increasing returns to growth. There is also evidence that institutional and openness variables such as democracy and executive constraints, trade and FDI inflows, have both significantly positive and significantly negative impacts. Perhaps this is due to their distributive effects. It may be that policies for institutional improvement and openness could be more effective if their interactions with distribution were addressed. Meanwhile, improving markets will have smaller returns than complementing them with adequate institutions capable of coordinating urbanization and investing in human capital and technology. Urbanization itself can provide a concrete agenda for development addressing critical local issues involving all aspects of economic, political and social life as well as human development. The neoclassical growth paradigm is wrong in another way as well. Economic development is not a smooth process. Growth policies depend for their success in identifying a set of transitions that a country is ripe for. #### 8. References - Acemoglu, Daron, Simon Johnson, and James A. Robinson (2005). Institutions as a Fundamental Cause of Long-Run Growth. In: Aghion, Philippe; Durlauf, Stefen (eds.). Handbook of Economic Growth. Amsterdam: North Holland. - Acemoglu, Daron, Simon Johnson, and James A. Robinson. (2002) "Reversal of Fortune: Geography and Institutions in the Making of the Modern World Income Distribution," Quarterly Journal of Economics 117(4):1231-1294 - Aghion, Howitt and Mayer-Foulkes (2005). "The Effect of Financial Development on Convergence: Theory and Evidence", Quarterly Journal of Economics, 120(1), Feb. - Barro, R. (1991) "Economic Growth in a Cross Section of Countries." Quarterly Journal of Economics 196 (2/May): 407–443. - Bloom, David E.; Canning, David & Sevilla, Jaypee (2003a). "The Demographic Dividend: A New Perspective on the Economic Consequences of Population Change, Rand, MR-1274. - Bloom, David E; Canning, David & Sevilla, Jaypee (2003b). "Geography and Poverty Traps," Journal of Economic Growth, Springer, vol. 8(4), pages 355-78, December. - Bloom, David E. & Canning, David (2008). "Population Health and Economic Growth." The World Bank On behalf of the Commission on Growth and Development. - Castellacci, Fulvio (2008). "Technology clubs,
technology gaps and growth trajectories," Structural Change and Economic Dynamics, Elsevier, vol. 19(4), pages 301-314, December. - Castellaci, Fulvio (2006). "Convergence and Divergence among Technology Clubs," DRUID Working Papers 06-21, DRUID, Copenhagen Business School, Department of Industrial Economics and Strategy/Aalborg University, Department of Business Studies. - Easterly, William and Levine, Ross (1997). "Africa's Growth Tragedy: Policies and Ethnic Divisions," Quarterly Journal of Economics 112, 1203-50, Nov. - Edwards, Ryan D. (2010). "Trends in World Inequality in Life Span Since 1970," NBER Working Papers 16088, National Bureau of Economic Research, Inc. - Galor, Oded & Weil, David N. (2000). "Population, Technology, and Growth: From Malthusian Stagnation to the Demographic Transition and Beyond," American Economic Review, Vol. 90, No. 4. (Sep), pp. 806-828. - Gray G. and M. Purser (2009). "Descriptive statistics and figures: Is it all really about income?". HDRO, UNDP. - Grier K. and R. Grier (2007). "Only income diverges: A neoclassical anomaly", Journal of Development Economics 84 (2007) 25–45. - Harris J. and M. Todaro (1970). Migration, Unemployment & Development: A Two-Sector - Howitt, P. and Mayer-Foulkes, D. (2005). "R&D, Implementation and Stagnation: A Schumpeterian Theory of Convergence Clubs", Journal of Money, Credit and Banking, 37(1) February. - Levine, Ross, Norman Loayza, and Thorsten Beck (2000). "Financial Intermediation and Growth: Causality and Causes." Journal of Monetary Economics 46, 31-77, August. - Mayer-Foulkes, D. (2006). "Global Divergence", in Severov, Gleb, International Finance and Monetary Policy, Nova Science Publishers. - McMichael A.J., McKee M., Shkolnikov V. & Valkonen T. (2004). "Mortality trends and setbacks: global convergence or divergence?" Lancet. Apr 3;363(9415):1155-9. - Moser K., Shkolnikov V., Leon D.A. (2005). "World mortality 1950-2000: divergence replaces convergence from the late 1980s," Bull World Health Organ. Mar;83(3):202-9. - Pritchett, Lant (1997). "Divergence, Big Time." Journal of Economic Perspectives, 11(3), Summer 1997, pp. 3-17. - Quah, Danny T. (1996). "Twin Peaks: Growth and Convergence in Models of Distribution Dynamics," Economic Journal, Royal Economic Society, vol. 106(437), pages 1045-55, July. - Ram, Rati (2006). "State of the "life span revolution" between 1980 and 2000," Journal of Development Economics, Elsevier, vol. 80(2), pages 518-526, August. - Rodrik, Dani, Arvind Subramanian (2003) "The Primacy of Institutions (and what this does and does not mean)," Finance & Development 40(2): 1-4. - Rodrik, Dani, Arvind Subramanian and Francesco Trebbi. (2004) "Institutions Rule: The Primacy of Institutions over Geography and Integration in Economic Development" Journal of Economic Growth, vol. 9, no.2, June 2004 - Sachs, J. D. (2003), "Institutions don't rule: Direct effects of geography on per capita income". NBER Working Paper 9490. - Sala-i-Martin, Xavier, 1997. "I Just Ran Two Million Regressions," American Economic Review, American Economic Association, vol. 87(2), pages 178-83, May. - Staiger, Douglas & Stock, James H. (1997). "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May. - Taylor, Sebastian (2009). "Wealth, health and equity: convergence to divergence in late 20th century globalization" British Medical Bulletin 2009; 91: 29–48. - UNAIDS (2008). Report on the global AIDS Epidemic, Joint United Nations Program on HIV/AIDS. - UNDP (1990), Human Development Report 1990 Concept and Measurement of Human Development, Human Development Report Office (HDRO), United Nations Development Programme (UNDP), http://econpapers.repec.org/RePEc:hdr:report:hdr1990. - Wan Jr., H. Y. (2004). Economic Development in a Globalized Environment: East Asian Evidences. Kluwer Academic Publishers, The Netherlands. ³ The Polity IV Project was originated by Will H. Moore and is currently available at the Center for International Development and Conflict Management at the University of Maryland. Special values -66, -77, -88 used to represent various exceptions are replaced here with 0. We use the 2009 update. ¹ A robust negative conditional convergence coefficient means *only* that economic growth follows a process of dynamic equilibrium. This is a non-trivial finding, but only implies a local form of convergence that is consistent with global convergence, divergence or stratified growth. The control variables are supposed to be exogenous and to define the steady state trajectories. ² See http://data.worldbank.org/indicator. ⁴ Trade is the sum of exports and imports as proportions of income. Although these are quite different variables from the technological point of view, they are collinear. For this reason I keep to the variable used more commonly, trade. ⁵ When the physical geography variables were interacted the 3SLS estimation did not converge. ⁶ The quinquennial fixed effects can be thought to include the technological leading edge in the HDI component being evaluated (see Aghion, Howitt and Mayer-Foulkes, 2005). ⁷ The AIDS dummy defines a contiguous region that approximately coincides with the region south of the 18th southern parallel in Africa. I consider that the social and geographic conditions that established this region as a contagion basin for AIDS already existed in 1970, and therefore consider the AIDS dummy to be exogenous. ⁸ The Hausman test first runs simultaneous OLS regressions instead of the simultaneous 3SLS regressions, and then an F test for the joint significance of the coefficients of the simultaneous OLS regression of these residuals on the full instrument set (including interacted terms). The Sargan test instead regresses the residuals of the simultaneous 3SLS regressions on the full instrument set and runs an F test on their joint significance. These tests are similarly applied to the individual clustered error IV regressions. ⁹ All of the estimates were carried out with Stata. Each quantile regression was carried out separately. Fifty weighted least-squares iterations were estimated before the linear programming iterations were started. Figure 1 Evolution of mean and standard deviation of literacy across country groups Figure 1.1 Across income groups Figure 1.2 Across human development groups Figure 2 Evolution of mean and standard deviation of log GDP per capita across country groups Figure 2.1 Across income groups Figure 2.2 Across human development groups Figure 3 Evolution of mean and standard deviation of life expectancy across country groups Figure 3.1 Across income groups Figure 3.2 Across human development groups Figure 4 Evolution of mean and standard deviation of gross enrolment rates across country groups Figure 4.1 Across income groups Figure 4.2 Across human development groups Figure 5 Decade phase diagrams for the evolution of literacy across regions in 1970 and 1995 Figure 6. Decade phase diagram for the evolution of log per capita income across income groups in 1980 and 1990 Figure 7 Decade phase diagrams for the evolution of life expectancy across regions in 1970 and 1995 Figure 8. Decade phase diagram for the evolution of gross enrolment ratio across income regions in 1970 and 1995 Figure 8 Decade phase diagram for the evolution of life expectancy in Sub Saharan Africa from 1970 to 1995 Figure 9 Evolution of mean and standard deviation of urbanization across country groups Figure 9.1 Across income groups Figure 9.2 Across human development groups Figure 10 Evolution of mean and standard deviation of exports across country groups Figure 10.1 Across income groups Figure 10.2 Across human development groups Figure 11 Evolution of mean and standard deviation of imports across country groups Figure 11.1 Across income groups Figure 11.2 Across human development groups Figure 12 Evolution of mean and standard deviation of executive constraints across country groups Figure 12.1 Across income groups Figure 12.2 Across human development groups Figure 13 Evolution of mean and standard deviation of democracy across country groups Figure 13.1 Across income groups Figure 13.2 Across human development groups Figure 14.1 Variables Impacting Level of Log GDP per Capita Figure 14.2 Variables Impacting Level of Life Expectancy Impact Graphs for Coefficients Significant at 5% in Instrumented Quantile Regression Figure 14.3 Variables Impacting Level of Literacy Impact Graphs for Coefficients Significant at 5% in Instrumented Quantile Regression Figure 14.4 Variables Impacting Level of Gross Enrolment Ratio Impact Graphs for Coefficients Significant at 5% in Instrumented Quantile Regression **Table 1. Descriptive Statistics for the Variables** Over the 595 Observation Sample | Variable | Mean | Std. Dev. | Minimum | Maximum | |-------------------------------|---------|-----------|---------|-----------| | Log GDP capita | 8.36 | 1.29 | 5.02 | 11.40 | | Life Expectancy | 62.66 | 11.43 | 29.11 | 81.38 | | Literacy | 0.69 | 0.28 | 0.05 | 0.99 | | Gross Enrolment Ratio | 0.57 | 0.21 | 0.05 | 1.15 | | Urban | 47.83 | 24.30 | 2.47 | 98.20 | | Trade | 61.43 | 33.56 | 8.06 | 222.26 | | Executive Constraint | 3.95 | 2.63 | 0 | 7 | | Democracy | 3.86 | 4.31 | 0 | 10 | | FDI inflows | 1.58 | 2.89 | -5.50 | 33.51 | | FDI outflows | 0.41 | 1.27 | -2.72 | 12.47 | | Pop Density (Agr) | -2.09 | 1.29 | -5.93 | 0.99 | | Δ Pop Density (Agr) | 0.02 | 0.01 | -0.08 | 0.15 | | Inflation | 28.38 | 169.25 | -3.46 | 2719.50 | | Risk Premium | 2.08 | 10.95 | -1.80 | 245.23 | | AIDS Dummy | 0.04 | 0.20 | 0 | 1 | | Landlocked | 0.19 | 0.39 | 0 | 1 | | Tropical | 0.54 | 0.50 | 0 | 1 | | Latitude | 14.09 | 25.92 | -36.89 | 63.89 | | area (sq. km.) | 898,753 | 1,832,343 | 430 | 9,160,736 | | Malaria Ecology Available | 0.95 | 0.21 | 0 | 1 | | Malaria Ecology | 4.29 | 7.58 | 0 | 31.55 | | Ethnic Fractionalization 1960 | 41.9 | 30.3 | 0 | 93.0 | | British Legal Origin |
0.33 | 0.47 | 0 | 1 | | French Legal Origin | 0.56 | 0.50 | 0 | 1 | | German Legal Origin | 0.05 | 0.21 | 0 | 1 | | Scandinavian Legal Origin | 0.06 | 0.24 | 0 | 1 | | East Asia Pacific | 0.09 | 0.29 | 0 | 1 | | East Europe and Central Asia | 0.01 | 0.11 | 0 | 1 | | Middle East and North Africa | 0.12 | 0.32 | 0 | 1 | | South Asia | 0.02 | 0.15 | 0 | 1 | | Western Europe | 0.16 | 0.37 | 0 | 1 | | North America | 0.02 | 0.15 | 0 | 1 | | Sub Saharan Africa | 0.33 | 0.47 | 0 | 1 | | Latin America and Caribbean | 0.24 | 0.42 | 0 | 1 | **Table 2. Absolute Convergence Regressions** 1970-2005 | | Log GDP per
Capita | Life
Expectancy | Literacy | Gross
Enrolment
Ratio | |---------------|-----------------------|--------------------|------------|-----------------------------| | | | OLS | | | | Initial Value | 0.00320*** | -0.00251** | -0.0119*** | -0.00338** | | | (0.00107) | (0.00120) | (0.000641) | (0.00166) | | Constant | -0.0130 | 0.443*** | 0.0143*** | 0.00898*** | | | (0.00902) | (0.0764) | (0.000477) | (0.00101) | | Observations | 595 | 595 | 595 | 595 | | R-squared | 0.015 | 0.007 | 0.369 | 0.007 | | | | | | | | | | 3SLS | | | | Initial Value | 0.00526*** | -0.000145 | -0.0129*** | 0.000946 | | | (0.00113) | (0.00128) | (0.000676) | (0.00182) | | Constant | -0.0302*** | 0.295*** | 0.0150*** | 0.00650*** | | | (0.00955) | (0.0812) | (0.000500) | (0.00110) | | Observations | 595 | 595 | 595 | 595 | | R-squared | 0.009 | 0.001 | 0.366 | -0.004 | | | | | | | | | | V Clustered | | | | Initial Value | 0.00564*** | -5.67e-05 | -0.0139*** | 0.00134* | | | (0.000242) | (0.000568) | (0.000292) | (0.000700) | | Constant | -0.0336*** | 0.288*** | 0.0158*** | 0.00620*** | | | (0.00242) | (0.0413) | (0.000219) | (0.000479) | | Observations | 595 | 595 | 595 | 595 | | R-squared | 0.006 | 0.000 | 0.358 | | Standard errors in parentheses ^{***} p<0.01, ** p<0.05, * p<0.1 Table 3.1 F Statistic for Instrument Significance in First Stage Regressions # Independent variable | Life
Expectancy | Literacy | Gross
Enrolment
Ratio | Urban | Trade | Executive
Constraint | Democracy | FDI inflows | FDI
outflows | Pop Density
(Agr) | D Pop
Density
(Agr) | Inflation | Risk
Premium | |--------------------|---|-----------------------------|--|--|---|--|--|---|---|---
---|--| | 103.60 | 119.66 | 71.63 | 156.74 | 22.41 | 15.46 | 12.31 | 3.51 | 6.01 | 90.81 | 3.31 | 1.48 | 1.55 | | 121.26 | 164.02 | 97.68 | 134.12 | 25.93 | 22.92 | 15.18 | 3.50 | 5.90 | 88.33 | 3.07 | 1.45 | 1.60 | | 111.23 | 159.50 | 96.08 | 153.92 | 26.08 | 22.50 | 14.71 | 3.31 | 5.86 | 72.47 | 2.96 | 1.45 | 1.61 | | 159.50 | 133.11 | 135.26 | 166.99 | 31.20 | 28.85 | 15.63 | 3.25 | 6.23 | 66.18 | 3.12 | 1.45 | 1.62 | | 96.08 | 135.26 | 48.11 | 127.12 | 26.04 | 25.89 | 15.43 | 2.72 | 5.02 | 56.19 | 3.42 | 1.46 | 1.58 | | | Life
Expectancy
103.60
121.26
111.23
159.50
96.08 | | 119.66
164.02
159.50
133.11
135.26 | Hiteracy Enrolment Y Ratio 119.66 71.63 164.02 97.68 159.50 96.08 133.11 135.26 135.26 48.11 | Hiteracy Enrolment Urban Ratio 119.66 71.63 156.74 164.02 97.68 134.12 159.50 96.08 153.92 133.11 135.26 166.99 135.26 48.11 127.12 | V Enrolment Urban Trade 119.66 71.63 156.74 22.41 164.02 97.68 134.12 25.93 159.50 96.08 153.92 26.08 133.11 135.26 166.99 31.20 135.26 48.11 127.12 26.04 | Gross Executive Constraint V Enrolment Urban Trade Executive Constraint 119.66 71.63 156.74 22.41 15.46 164.02 97.68 134.12 25.93 22.92 159.50 96.08 153.92 26.08 22.50 133.11 135.26 166.99 31.20 28.85 135.26 48.11 127.12 26.04 25.89 | V Executive Ratio Literacy Enrolment Urban Trade Trade Executive Constraint Democracy FDI 119.66 71.63 156.74 22.41 15.46 12.31 154.02 15.18 15.18 15.18 159.50 15.18 159.50 26.08 22.50 14.71 15.63 15.63 15.63 15.63 15.43 <th>Literacy Enrolment Urban Trade Executive Constraint Democracy FDI inflows outflows 119.66 71.63 156.74 22.41 15.46 12.31 3.51 6.01 164.02 97.68 134.12 25.93 22.92 15.18 3.50 5.90 159.50 96.08 153.92 26.08 22.50 14.71 3.31 5.86 133.11 135.26 166.99 31.20 28.85 15.63 3.25 6.23 135.26 48.11 127.12 26.04 25.89 15.43 2.72 5.02</th> <th>V Literacy Enrolment Urban Trade Executive Constraint Democracy FDI inflows 119.66 71.63 156.74 22.41 15.46 12.31 3.51 164.02 97.68 134.12 25.93 22.92 15.18 3.50 159.50 96.08 153.92 26.08 22.50 14.71 3.31 133.11 135.26 166.99 31.20 28.85 15.63 3.25 135.26 48.11 127.12 26.04 25.89 15.43 2.72</th> <th>Literacy Enrolment Urban Trade Executive Constraint Democracy FDI inflows outflows FDI outflows outflows Pop Density 119.66 71.63 156.74 22.41 15.46 12.31 3.51 6.01 90.81 164.02 97.68 134.12 25.93 22.92 15.18 3.50 5.90 88.33 159.50 96.08 153.92 26.08 22.50 14.71 3.31 5.86 72.47 133.11 135.26 166.99 31.20 28.85 15.63 3.27 5.02 56.19 135.26 48.11 127.12 26.04 25.89 15.43 2.72 5.02 56.19</th> <th>Literacy Enrolment Urban Trade Executive Constraint Democracy FDI inflows outflows FDI outflows outflows Pop Density (Agr) Density Density (Agr) 119.66 71.63 156.74 22.41 15.46 12.31 3.51 6.01 90.81 3.31 164.02 97.68 134.12 25.93 22.92 15.18 3.50 5.90 88.33 3.07 159.50 96.08 153.92 26.08 22.50 14.71 3.31 5.86 72.47 2.96 133.11 135.26 166.99 31.20 28.85 15.63 3.25 6.23 66.18 3.12 135.26 48.11 127.12 26.04 25.89 15.43 2.72 5.02 56.19 3.42</th> | Literacy Enrolment Urban Trade Executive Constraint Democracy FDI inflows outflows 119.66 71.63 156.74 22.41 15.46 12.31 3.51 6.01 164.02 97.68 134.12 25.93 22.92 15.18 3.50 5.90 159.50 96.08 153.92 26.08 22.50 14.71 3.31 5.86 133.11 135.26 166.99 31.20 28.85 15.63 3.25 6.23 135.26 48.11 127.12 26.04 25.89 15.43 2.72 5.02 | V Literacy Enrolment Urban Trade Executive Constraint Democracy FDI inflows 119.66 71.63 156.74 22.41 15.46 12.31 3.51 164.02 97.68 134.12 25.93 22.92 15.18 3.50 159.50 96.08 153.92 26.08 22.50 14.71 3.31 133.11 135.26 166.99 31.20 28.85 15.63 3.25 135.26 48.11 127.12 26.04 25.89 15.43 2.72 | Literacy Enrolment Urban Trade Executive Constraint Democracy FDI inflows outflows FDI outflows outflows Pop Density 119.66 71.63 156.74 22.41 15.46 12.31 3.51 6.01 90.81 164.02 97.68 134.12 25.93 22.92 15.18 3.50 5.90 88.33 159.50 96.08 153.92 26.08 22.50 14.71 3.31 5.86 72.47 133.11 135.26 166.99 31.20 28.85 15.63 3.27 5.02 56.19 135.26 48.11 127.12 26.04 25.89 15.43 2.72 5.02 56.19 | Literacy Enrolment Urban Trade Executive Constraint Democracy FDI inflows outflows FDI outflows outflows Pop Density (Agr) Density Density (Agr) 119.66 71.63 156.74 22.41 15.46 12.31 3.51 6.01 90.81 3.31 164.02 97.68 134.12 25.93 22.92 15.18 3.50 5.90 88.33 3.07 159.50 96.08 153.92 26.08 22.50 14.71 3.31 5.86 72.47 2.96 133.11 135.26 166.99 31.20 28.85 15.63 3.25 6.23 66.18 3.12 135.26 48.11 127.12 26.04 25.89 15.43 2.72 5.02 56.19 3.42 | Table 3.2 P Values for Instrument Significance in First Stage Regressions ## Independent variable | Interacted with | Log GDP
capita | Life
Expectancy | Literacy | Gross
Enrolment
Ratio | Urban | Trade | Executive
Constraint | Democracy | / FDI inflows | FDI
outflows | Pop Density
(Agr) | Δ Pop
Density
(Agr) | Inflation | Risk
Premium | |------------------------------|-------------------|--------------------|----------|-----------------------------|-------|-------|-------------------------|-----------|---------------|-----------------|----------------------|----------------------------------|-----------|-----------------| | None | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | 0.000 | 0.009 | 0.004 | | Log GDP per Capita | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.012 | 0.002 | | Life Expectancy | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | | 0.000 | 0.012 | 0.002 | | Literacy | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.013 | 0.002 | | Gross Enrolment Ratio | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.010 | 0.003 | | | | | | | | | | | | | | | | | Table 4. Correlation of Independent Variables with Instruments Over the 595 Observation Sample | | | | | J | יעבו וווב סאס | Observacio | all salliple | | | | | | | | |---------------------------------|---------|------------|----------|--------------------|---------------|------------|--------------|-----------------------|-------------|----------|------------------|------------------|-----------|---------| | | Log GDP | Life | | Gross | | | Executive | | | <u>a</u> | Pop | ∆ Pop | | Risk | | | capita | Expectancy | Literacy | Enrolment
Ratio | Urban | Trade | Constraint | Democracy FDI inflows | FDI inflows | outflows | Density
(Agr) | Density
(Agr) | Inflation | Premium | | AIDS Dummy | -0.16 | -0.18 | -0.07 | -0.03 | -0.15 | 0.10 | 0.01 | 0.01 | 0.13 | -0.05 | -0.19 | 0.05 | -0.01 | 0.02 | | Landlocked | -0.39 | -0.44 | -0.36 | -0.39 | -0.44 | -0.06 | -0.15 | -0.14 | -0.05 | -0.06 | -0.23 | 60.0 | 0.02 | 0.00 | | Tropical | -0.63 | -0.59 | -0.45 | -0.53 | -0.60 | 0.07 | -0.35 | -0.33 | 0.07 | -0.30 | -0.20 | 0.19 | 0.05 | -0.03 | | Latitude | 0.47 | 0.41 | 0.24 | 0.27 | 0.29 | 0.05 | 0.16 | 0.18 | -0.08 | 0.33 | 0.38 | -0.16 | -0.14 | -0.02 | | Area (sq. km.) | 0.18 | 0.11 | 0.12 | 0.17 | 0.23 | -0.33 | 0.16 | 0.15 | -0.05 | 0.03 | -0.14 | -0.03 | 0.12 | 0.04 | | Malaria Ecology Available | -0.11 | -0.04 | -0.05 | -0.07 | 0.08 | -0.18 | 0.09 | 0.09 | -0.08 | 90.0 | -0.09 | 0.01 | 0.03 | 0.00 | | Malaria Ecology | -0.58 | -0.62 | -0.67 | -0.66 | -0.47 | -0.09 | -0.34 | -0.32 | -0.02 | -0.16 | -0.28 | 0.18 | -0.04 | -0.06 | | Ethnic Fractionalization 1960 | -0.51 | -0.56 | -0.51 | -0.49 | -0.48 | -0.08 | -0.23 | -0.26 | 0.02 | -0.17 | -0.28 | 0.24 | 0.00 | -0.02 | | British Legal Origin | -0.07 | -0.05 | 0.02 | 0.02 | -0.18 | 0.21 | 0.10 | 90.0 | 0.21 | -0.01 | 0.00 | 0.01 | -0.06 | 0.13 | | French Legal Origin | -0.20 | -0.19 | -0.28 | -0.23 | -0.03 | -0.20 | -0.25 | -0.21 | -0.15 | -0.15 | -0.14 | 0.12 | 0.08 | -0.10 | | German Legal Origin | 0.25 | 0.22 | 0.23 | 0.19 | 0.14 | -0.04 | 0.19 | 0.17 | -0.08 | 0.11 | 0.32 | -0.08 | -0.03 | -0.03 | | Scandinavian Legal Origin | 0.33 | 0.29 | 0.27 | 0.29 | 0.30 |
0.04 | 0.15 | 0.17 | -0.02 | 0.25 | 0.01 | -0.19 | -0.03 | -0.02 | | East Asia Pacific | 0.10 | 0.17 | 0.23 | 0.19 | 0.09 | -0.02 | 0.12 | 0.10 | 0.00 | -0.02 | 0.30 | -0.07 | -0.04 | -0.01 | | East Europe and Central Asia | 0.04 | 0.00 | 0.01 | -0.02 | 0.02 | -0.10 | 0.08 | 90.0 | -0.05 | -0.03 | 0.00 | 0.00 | 0.01 | -0.02 | | Middle East and North Africa | 0.16 | 0.13 | -0.08 | 0.07 | 0.17 | 90.0 | -0.10 | -0.12 | -0.09 | -0.08 | 0.16 | 0.10 | -0.03 | 0.10 | | South Asia | -0.20 | -0.13 | -0.19 | -0.13 | -0.21 | -0.17 | 0.08 | 0.03 | -0.08 | -0.05 | 0.15 | 0.05 | -0.02 | 0.01 | | Western Europe | 0.55 | 0.50 | 0.46 | 0.42 | 0.43 | 0.10 | 0.30 | 0.34 | 0.03 | 0.48 | 0.17 | -0.28 | -0.06 | -0.04 | | North America | 0.22 | 0.17 | 0.17 | 0.21 | 0.18 | -0.11 | 0.18 | 0.17 | -0.01 | 0.10 | -0.12 | -0.07 | -0.02 | 0.00 | | Sub Saharan Africa | -0.70 | -0.76 | -0.68 | -0.67 | -0.63 | -0.03 | -0.36 | -0.36 | 0.00 | -0.20 | -0.35 | 0.31 | -0.06 | -0.04 | | Latin America and Caribbean | 0.08 | 0.16 | 0.25 | 0.16 | 0.13 | 0.05 | 0.01 | 0.03 | 0.09 | -0.14 | -0.11 | -0.12 | 0.18 | 0.01 | | Num. instrum. with corr > 0.1 | 17 | 17 | 15 | 15 | 16 | 7 | 14 | 13 | æ | 10 | 16 | 10 | ĸ | 2 | ### **Table 5. P Values of Hausman and Sargan Tests** for convergence estimates on rates of change of HDI components ### Log GDP capita | Constraints Urban 19998 0.99998 19685 0.98126 1004335 0.00008158 1095 0.64304 | |---| | 09685 0.98126 004335 0.00008158 | | 0.00008158 | | | | 1095 0.64304 | | | | | | Constraints Urban | | 9065 0.97989 | | 9937 0.37794 | | 0.00000153 | | 9950 0.9861 | | | | | | Constraints Urban 0.0000153 | | | | 0.00008158 | | 000233 3.16E-07 | | 0.09594 | | | | io | | Constraints Urban | | 0.00815 | | 002327 3.158E-07 | | 0.000007 | | | 0.95704 0.95094 0.85468 Hausman tests with better than 1% significance in bold. 0.97586 Sargan tests with worse that 60% significance in bold. IV cluster Sargan Table 6. Coefficients of 3SLS and Clustered Error IV Convergence Estimates No independent variable omitted | Variable Dependiente | | IV | 3SLS | IV | 3SLS | IV | 3SLS | IV | 3SLS | |--|---------------------------|-------------|------------|--------------|------------|--------------|--------------|--------------|------------| | Dep Var X Life Expectancy | - | _ | - | | | Literacy | Literacy | Enrolment | Enrolment | | Dep Var X Life Expectanty Dep Var X Life race (0.000187) 0.0006419 (0.000634) 0.0000225 (0.0000397) 0.0000159 (0.000398) 0.0000159 (0.000398) 0.000159 (0.000391) 0.0000580 (0.000391) 0.000159 (0.000391) 0.000159 (0.000391) 0.00157 (0.000315) 0.00157 (0.00157) 0.00157 (0.00157) 0.00157 (0.00157) 0.00157 (0.00157) 0.00157 (0.00157) 0.00157 (0.00157) 0.00157 (0.00157) 0.00157 (0.00157) 0.00157 (0.00157) 0.00157 (0.00157) 0.00157 (0.00157) 0.00157 (0.00157) 0.00157 (0.00157) 0.00157 (0.00157) 0.00157 (0.00157) 0.00157 (0.00157) 0.00157 (0.00157) 0.00152 (0.00157) 0.00152 (0.00157) 0.000283 (0.00157) 0.000283 (0.00012) 0.000283 (0.00012) 0.000452 (0.00012) 0.000283 (0.00012) 0.000152 (0.000287) 0.000508 (0.000012) 0.000508 (0.000012) 0.000508 (0.0000000) 0.0000508 (0.00000000) 0.0000508 (0.00000000000) 0.0000509 (0.0000000000000000000000000000000000 | Dep Var X Log GDP per | -0.0113*** | -0.0130** | -0.00613** | -0.0109* | -0.00476*** | -0.00163 | | | | Dep Var X Literacy | Capita | (0.00221) | (0.00524) | (0.00250) | (0.00623) | (0.00111) | (0.00250) | (0.00313) | (0.00885) | | Dep Var X Literacy | Dan Van VIII Francistana | -0.000253 | -0.000541 | 0.000176 | -0.000306 | -0.000410*** | -0.000580 | -0.000412 | -0.000232 | | Dep Var X Interacy (0.0106) (0.0232) (0.0109) (0.0244) (0.00719) (0.0142) (0.0160) (0.0415) | Dep var x Life Expectancy | (0.000187) | (0.000634) | (0.000225) | (0.000597) | (0.000159) | (0.000395) | (0.000391) | (0.00107) | | Dep Var X Gross Enrolment 0.00137 0.00481 0.00199 0.00494 0.00179 0.00149 0.00189 0.00285 0.00285 0.00285 0.00285 0.00285 0.00285 0.00285 0.00285 0.00285 0.00285 0.00285 0.00285 0.00285 0.00285 0.00285 0.000288*** 0.000441** 0.00380 0.00285 0.000282** 0.000285 | Dan Van VIII and an | 0.0342*** | 0.0380 | 0.0194* | 0.0548* | -0.0116 | -0.0219 | 0.0295* | 0.0157 | | Ratio (0.0117) (0.0318) (0.0151) (0.0381) (0.00839) (0.0180) (0.0236) (0.0632) Dep Var X Urban (0.090288********************************** | Dep var X Literacy | (0.0106) | (0.0232) | (0.0109) | (0.0294) | (0.00719) | (0.0142) | (0.0160) | (0.0415) | | Dep Var X Urban 0.000288*** 0.000441** -3.56e-06 8.43e-05 0.000482*** 0.000679*** 0.000679** 0.000638 Dep Var X Trade 6.14e-05 0.000137 1.48e-05 0.000125 (7.35e-05) (0.000129) (9.59e-05) (0.000137) Dep Var X Executive -0.00487*** -0.00514 -2.82e-05 -0.00045 (0.00078** 0.00168 -0.00245 -0.000159 Dep Var X Democracy 0.00359*** 0.00316 (0.00188) (0.00331) (0.000784
-0.00180 (0.00348** -0.00168 -0.00242 (0.00515) Dep Var X Democracy (0.0016) (0.00250) (0.00180) (0.00283) (0.000784 -0.00180 0.00373** 0.00065* 0.000678 -0.00180 0.00373** 0.00065* 0.000584 -0.00180 0.000579 0.000784 -0.00180 0.00073** 0.00073** 0.000150 (0.00150* (0.000594** -0.00180 0.00073** 0.00065** 0.000784 -0.00180 0.000759** 0.00065** 0.000594** -0.0018** 0.000759** | Dep Var X Gross Enrolment | 0.00137 | -0.00478 | 0.00422 | 2.04e-05 | -0.0454*** | -0.0487*** | -0.00636 | 0.0285 | | Dep Var X Trade (6.99e-05) (0.000203) (9.89e-05) (0.000265) (7.35e-05) (0.000129) (9.59e-05) (0.000388) Dep Var X Trade 6.14e-05 (0.000117) (1.48e-05 0.000122 -7.26e-06 2.57e-05 0.000136*********************** 0.000137 1.48e-05 0.000126 (2.91e-05) (6.55e-05) (6.23e-05) (0.00017) Dep Var X Executive -0.00487**** -0.00514 -2.82e-05 -0.000495 0.00028** 0.00108 -0.00245 -0.000269 Dep Var X Democracy (0.00395*** -0.0048* -0.00190 0.000754 -0.000784 -0.00108 0.00039 0.000259 0.000269 Dep Var X FDI inflows -4.25e-05 -0.00151 0.00192 0.000885 -0.000949* -0.0108 -0.00676*** -0.00659** Dep Var X FDI inflows -0.00274 -0.0181 0.00418* (0.0024) (0.000554) (0.00188 (0.00273) (0.00151 0.0069** Dep Var X FDI outflows 0.000279 -0.0115 0.00621* -0.0313** -0.00248 | Ratio | (0.0117) | (0.0318) | (0.0151) | (0.0381) | (0.00839) | (0.0180) | (0.0236) | (0.0632) | | Dep Var X Trade | S. W. Wilde | 0.000288*** | 0.000441** | -3.56e-06 | 8.43e-05 | 0.000482*** | 0.000500*** | 0.000679*** | 0.000632 | | Dep Var X Trade 6.14e-05 0.000137 1.48e-05 0.001120 -7.26e-06 2.57e-05 0.00116*** 0.000131 Dep Var X Executive -0.00487*** -0.00514 -2.82e-05 -0.000495 0.00028** 0.00168 -0.00245 -0.000269 Constraint (0.00145) (0.00316) (0.00188) (0.00331) (0.00088) (0.00150) (0.00242) (0.00515) Dep Var X Democracy (0.00116) (0.00250) (0.00190 0.000754 -0.000744 -0.00108 0.000739 (0.00402) Dep Var X FDI inflows -4.25e-05 -0.00151 0.00192 0.000885 -0.000949* -0.0108 0.00676*** -0.00569** Dep Var X FDI inflows -0.00274 -0.018 0.0340*** 0.0261* -0.0313*** -0.00158 0.00279 0.0121 Dep Var X FDI outflows (0.00361) (0.0129) 0.00151** 0.00131** 0.00365** 0.0035** 0.0035** 0.00248** 0.00249 Dep Var X Pop Density in Agramation (log) 0.000529 -0.0019 0.00151** | Dep var x Urban | (6.99e-05) | (0.000203) | (9.89e-05) | (0.000265) | (7.35e-05) | (0.000129) | (9.59e-05) | (0.000386) | | March Marc | Don Voy V Trade | 6.14e-05 | 0.000137 | 1.48e-05 | 0.000122 | | 2.57e-05 | 0.000196*** | 0.000139 | | Constraint (0.00145) (0.00316) (0.00188) (0.00331) (0.000888) (0.00150) (0.00242) (0.00515) Dep Var X Democracy (0.00116) (0.00250) (0.00180) (0.00283) (0.000794) -0.00180 (0.00373* 0.000629 Dep Var X FDI inflows -4.25e-05 -0.00151 0.00192 0.000885 -0.000949* -0.00108 -0.00676*** -0.00569** Dep Var X FDI outflows -0.00274 -0.0148 0.0340*** 0.0261* -0.0313*** -0.0365*** 0.00939*** 0.0121 Dep Var X Pop Density in Agra Land (log) -0.000529 -0.0109 0.0015** -0.00362* 0.000851 0.00087** 0.00280*** 0.00087** 0.00087** 0.000862** 0.00085** 0.00331*** -0.0365*** 0.00939*** 0.0121 0.00399*** 0.0121 0.00369** 0.000499 0.00112 0.00365*** 0.00399*** 0.00128 0.000499 0.000499 0.000493 0.0004873 0.000808** 0.000264 0.0112 0.00280** 0.00280** 0.00280** 0.000283 | Dep var X Trade | (4.02e-05) | (0.000111) | (4.95e-05) | (0.000126) | (2.91e-05) | (6.55e-05) | (6.23e-05) | (0.000171) | | Dep Var X Democracy 0.00395*** 0.00485* -0.00190 0.000754 -0.000784 -0.00180 0.00373* 0.000629 Dep Var X FDI inflows (0.00116) (0.00250) (0.00192) 0.00885 -0.000949* -0.00108 -0.00676*** -0.00569** Dep Var X FDI outflows -0.00274 (0.00223) (0.00118) (0.00204) (0.000554) (0.000855) (0.00158) (0.00274) Dep Var X FDI outflows -0.00274 -0.0148 0.0340**** -0.0261** -0.0313**** -0.0365**** 0.0039*** 0.0112 Dep Var X Pop Density in Agr Land (log) (0.00050) (0.00153) (0.00153) (0.000572) (0.00148) (0.000493) (0.0012 -0.00280*** -0.0346 Growth (0.115) (0.279) (0.0153) (0.281) (0.00493) (0.00373 (0.00280*** -0.116 Dep Var X Risk Premium (0.0115) (0.279) (0.0159) (0.0211 (0.00459) (0.00459) (0.00164** -0.0176**** -0.00659 Dep Var X Inflation (0.00621*** | Dep Var X Executive | -0.00487*** | -0.00514 | -2.82e-05 | -0.000495 | 0.00208** | 0.00168 | -0.00245 | -0.000269 | | Dep Var X FDI inflows (0.0016) (0.00250) (0.00180) (0.00283) (0.000703) (0.00137) (0.00195) (0.00430) | Constraint | (0.00145) | (0.00316) | (0.00188) | (0.00331) | (0.000888) | (0.00150) | (0.00242) | (0.00515) | | Dep Var X FDI inflows (0.00116) (0.00250) (0.00180) (0.00283) (0.000703) (0.00175) (0.00195) (0.00430) (0.00274) (0.00076) (0.00274) (0.00018) (0.00018) (0.000885) (0.00188) (0.00274) (0.000554) (0.000855) (0.00158) (0.00274) (0.00274) (0.00018) (0.00274) (0.00018) (0.00018) (0.000274) (0.00018) (0.000274) (0.000855) (0.00118) (0.00274) (0.00018) (0.00018) (0.000855) (0.00118) (0.00274) (0.000855) (0.00118) (0.00274) (0.000855) (0.00118) (0.000274) (0.000857) (0.00118) (0.000857) (0.00118) (0.000857) (0.00118) (0.000862) (0.00142) (0.00248) (0.000887) (0.000873) (0.000873) (0.000873) (0.000873) (0.000873) (0.000873) (0.000873) (0.000873) (0.000873) (0.000873) (0.000873) (0.000873) (0.000873) (0.000853) (0.000256) (0.0018) | D V V D | 0.00395*** | 0.00485* | -0.00190 | 0.000754 | -0.000784 | -0.000180 | 0.00373* | 0.000629 | | Dep Var X FDI inflows (0.000796) (0.00223) (0.00118) (0.00204) (0.000554) (0.000855) (0.00158) (0.00274) (0.00274) (-0.0148 0.0340*** 0.0261* -0.0313*** -0.0365*** 0.00939*** 0.0121 (0.00361) (0.00129) (0.00695) (0.0151) (0.00862) (0.0142) (0.00248) (0.00987) (0.00987) (0.00862) (0.0142) (0.00248) (0.00987) (0.00862) (0.0142) (0.00248) (0.00987) (0.00862) (0.0142) (0.00248) (0.00987) (0.00862) (0.00862) (0.00112 -0.00280*** -0.00346 (0.00862) (0.00862) (0.00873) (0.000858) (0.00256) (0.00862) (0.00873) (0.000858) (0.00256) (0.00862) (0.00862) (0.00873) (0.000858) (0.00256) (0.00862) (0.00862) (0.00868) (0.00256) (0.00868) (0.00256) (0.00868) (0.00868) (0.00868) (0.00868) (0.00868) (0.00868) (0.00868) (0.00862) (0.00644) (0.0166) (0.0166) (0.00862) (0.00862) (0.00862) (0.00868) (0.00868) (0.00866) (0.00862) (0.00862) (0.008662) (0.00866) (0.0086 | Dep var X Democracy | (0.00116) | (0.00250) | (0.00180) | (0.00283) | (0.000703) | (0.00137) | (0.00195) | (0.00430) | | Dep Var X FDI outflows | Dan Van V FDI inflama | -4.25e-05 | -0.00151 | 0.00192 | 0.000885 | -0.000949* | -0.00108 | -0.00676*** | -0.00569** | | Dep Var X Pop Density in Agr Land (log) (0.0129) (0.00695) (0.0151) (0.00862) (0.0142) (0.00248) (0.00987) | Dep var X FDI Inflows | (0.000796) | (0.00223) | (0.00118) | (0.00204) | (0.000554) | (0.000855) | (0.00158) | (0.00274) | | Dep Var X Pop Density in -0.000529 -0.00109 0.00115** -0.000549 0.000514 0.00112 -0.00248 (0.00987) | Day Van V FDI autfland | -0.00274 | -0.0148 | 0.0340*** | 0.0261* | -0.0313*** | -0.0365*** | 0.00939*** | 0.0121 | | Dep Var X Pop Density in Agr Land (log) -0.000529 -0.00199 0.00115** -0.000499 0.000514 0.00112 -0.00280*** -0.00346 Agr Land (log) (0.000600) (0.00153) (0.000572) (0.00188) (0.000493) (0.000873) (0.000858) (0.00256) Dep Var X Pop Density Growth (0.115) (0.279) (0.159) (0.281) (0.0546) (0.112) (0.145) (0.317) Dep Var X Risk Premium Dep Var X Inflation 0.000379 (0.000481) (0.000388) 0.000485 0.000648 0.000347 (0.000444) -0.00176*** -0.000650 Dep Var X Inflation (3.86e-05) (5.42e-05) (1.25e-05) (4.29e-05) (9.24e-06) (3.37e-05) (1.12e-05) (7.31e-05) Log GDP per Capita (0.0270) (0.0642) (0.155) (0.397) (0.000968) (0.00198) (0.00166) (0.00333) Life Expectancy 0.00284* 0.00533 0.0224 0.0756 0.00177* 0.00241 0.00388* 0.000333 Literacy (0.0875) (0.186) | Dep var X FDI outflows | (0.00361) | (0.0129) | (0.00695) | (0.0151) | (0.00862) | (0.0142) | (0.00248) | (0.00987) | | Dep Var X Pop Density Growth 0.0800 0.183 0.261 0.361 -0.0497 -0.0354 -0.178 -0.116 Dep Var X Risk Premium Dep Var X Inflation 0.000379 0.000445 0.000353 0.000485 0.000621* 0.000644 -0.00176*** -0.000650 Dep Var X Inflation -4.46e-05 -3.57e-05 -5.03e-05*** -7.60e-05* -3.28e-05*** -1.60e-05 -0.00156*** -8.73e-05 Log GDP per Capita 0.160*** 0.196*** 0.311** 0.626 0.00535*** 0.00035 0.00128** Life Expectancy 0.00284* 0.00533 0.0224 0.0756
0.00177* 0.00241 0.00166* 0.0128** Literacy 0.00284* 0.09533 0.0224 0.0756 0.000177* 0.00241 0.00388* 0.00038* Literacy 0.0028** -0.268 -1.702*** -3.571** 0.0667*** 0.0650*** -0.0327*** -0.0197 Gross Enrolment Ratio 0.0166 0.0274 0.266 0.419 0.0333*** 0.0380*** 0.147*** | Dep Var X Pop Density in | -0.000529 | -0.00109 | 0.00115** | -0.000499 | 0.000514 | 0.00112 | | -0.00346 | | Dep Var X Pop Density Growth 0.0800 0.183 0.261 0.361 -0.0497 -0.0354 -0.178 -0.116 Dep Var X Risk Premium Dep Var X Inflation 0.000379 0.000445 0.000353 0.000485 0.000621* 0.000644 -0.00176**** -0.000650 Dep Var X Inflation -4.46e-05 -3.57e-05 -5.03e-05*** -7.60e-05* -3.28e-05*** -1.60e-05 -0.00176*** -8.73e-05 Log GDP per Capita 0.160*** 0.196*** 0.311** 0.626 0.00535*** 0.00035** 0.00128* Life Expectancy 0.00284* 0.00533 0.0224 0.0756 0.000177* 0.000241 0.00166** 0.0128** Literacy 0.00284* 0.00533 0.0224 0.0756 0.000177* 0.000241 0.00038* 0.00038* Gross Enrolment Ratio 0.00501 0.00469 0.0626 0.419 0.0627** 0.00650** 0.00027** -0.00192 Urban 0.00501 0.00622** 0.00533 0.0224 0.0756 0.000432** 0.00333** <td>Agr Land (log)</td> <td>(0.000600)</td> <td>(0.00153)</td> <td>(0.000572)</td> <td>(0.00188)</td> <td>(0.000493)</td> <td>(0.000873)</td> <td>(0.000858)</td> <td>(0.00256)</td> | Agr Land (log) | (0.000600) | (0.00153) | (0.000572) | (0.00188) | (0.000493) | (0.000873) | (0.000858) | (0.00256) | | Dep Var X Risk Premium 0.000379 (0.000445 (0.000353) 0.000485 (0.000347) 0.000621* (0.000644) -0.00176*** -0.000650 -0.000650 Dep Var X Inflation -4.46e-05 (3.86e-05) -3.57e-05 (5.42e-05) -5.03e-05*** -7.60e-05* -3.28e-05*** -1.60e-05 -0.00105*** -8.73e-05 -8.73e-05 Log GDP per Capita 0.160*** (0.0270) 0.196*** (0.0642) 0.311** (0.397) 0.000353**** (0.00035) 0.0130*** (0.00158) 0.0128** Life Expectancy 0.00284* (0.00533) 0.0224 (0.0155) 0.00177* (0.00041) 0.000239 (0.000239) 0.00038* 0.000333 Literacy -0.238*** (0.0875) -0.268 (0.638) -1.702*** (0.638) -3.571** (0.00822) 0.0161) 0.00849 (0.0027) 0.0027* Gross Enrolment Ratio -0.0501 (0.106) (0.271) (1.003) (2.470) 0.00450 (0.00482) 0.0138) 0.00452*** -0.000452*** -0.000452*** -0.000452*** -0.000452*** -0.000452*** -0.000452*** -0.000416* Urban -0.00262*** (0.0017) -0.0017 -0.0017 -0.0017 -0.000457 -0.00117 -0.00192 -0.000450 -0.000452*** -0.000452*** -0.000452*** -0.000452*** -0.000452*** -0.000452*** -0.000452*** -0.0000452*** -0.0000452*** -0.0000452*** -0.0000452*** -0.0000452** -0.0000452** -0.0000452** -0 | Dep Var X Pop Density | 0.0800 | 0.183 | 0.261 | 0.361 | -0.0497 | -0.0354 | -0.178 | -0.116 | | Dep Var X Inflation | Growth | (0.115) | (0.279) | (0.159) | (0.281) | (0.0546) | (0.112) | (0.145) | (0.317) | | Dep Var X Inflation | Day Van V Biala Buarriana | 0.000379 | 0.000445 | 0.000353 | 0.000485 | 0.000621* | 0.000644 | -0.00176*** | -0.000650 | | Company Comp | Dep var X Kisk Premium | (0.000272) | (0.000618) | (0.000399) | (0.000743) | (0.000347) | (0.000459) | (0.000548) | (0.00128) | | Light Expectancy Continue C | Dan Van V Inflation | -4.46e-05 | -3.57e-05 | -5.03e-05*** | -7.60e-05* | -3.28e-05*** | -1.60e-05 | -0.000105*** | -8.73e-05 | | Life Expectancy (0.0270) (0.0642) (0.155) (0.397) (0.000968) (0.00198) (0.00166) (0.00538) Life Expectancy 0.00284* 0.00533 0.0224 0.0756 0.000177* 0.000241 0.000388* 0.000333 Literacy (0.00146) (0.00492) (0.0192) (0.0582) (9.61e-05) (0.000239) (0.000208) (0.000526) Gross Enrolment Ratio (0.0875) (0.186) (0.638) (1.805) (0.00822) (0.0161) (0.00849) (0.0227) Urban (0.106) (0.271) (1.003) (2.470) (0.00682) (0.0138) (0.0193) (0.0677) -0.00262*** -0.00399** 0.000563 -0.00496 -0.000430***-0.000452***-0.000452***-0.000452***-0.000452*** -0.000416* -0.000457 -0.00117 -0.00192 -0.00933 3.89e-06 -1.95e-05 -0.000144*** -0.000112 | Dep var x inflation | (3.86e-05) | (5.42e-05) | (1.25e-05) | (4.29e-05) | (9.24e-06) | (3.37e-05) | (1.12e-05) | (7.31e-05) | | Life Expectancy 0.00270 (0.0642) (0.155) (0.397) (0.000968) (0.00198) (0.00166) (0.00538) | Lan CDD was Carrita | 0.160*** | 0.196*** | 0.311** | 0.626 | 0.00535*** | 0.00305 | 0.0130*** | 0.0128** | | Literacy (0.00146) (0.00492) (0.0192) (0.0582) (9.61e-05) (0.000239) (0.000208) (0.000526) Literacy (0.0875) (0.186) (0.638) (1.805) (0.00822) (0.0161) (0.00849) (0.0227) Gross Enrolment Ratio (0.106) (0.271) (1.003) (2.470) (0.00682) (0.0138) (0.0193) (0.0677) Urban (0.00638) (0.00181) (0.00681) (0.0176) (6.68e-05) (0.000108) (6.30e-05) (0.000247) -0.000457 -0.00117 -0.00192 -0.0093 3.89e-06 -1.95e-05 -0.000144*** -0.000112 | Log GDP per Capita | (0.0270) | (0.0642) | (0.155) | (0.397) | (0.000968) | (0.00198) | (0.00166) | (0.00538) | | Literacy (0.00146) (0.00492) (0.0192) (0.0582) (9.61e-05) (0.000239) (0.000208) (0.000526) (0.000527) (0.000526) (0.00052 | Life Francisco | 0.00284* | 0.00533 | 0.0224 | 0.0756 | 0.000177* | 0.000241 | 0.000388* | 0.000333 | | Colored Colo | Life Expectancy | (0.00146) | (0.00492) | (0.0192) | (0.0582) | (9.61e-05) | (0.000239) | (0.000208) | (0.000526) | | Gross Enrolment Ratio Urban (0.0875) (0.186) (0.638) (1.805) (0.00822) (0.0161) (0.00849) (0.0227) (0.106) (0.271) (1.003) (2.470) (0.00682) (0.0138) (0.0193) (0.0677) (0.00622*** -0.00399** 0.000563 -0.00496 -0.000430***-0.000452***-0.000452*** -0.000416* (0.000638) (0.00181) (0.00681) (0.0176) (6.68e-05) (0.00108) (6.30e-05) (0.000247) | I than an | -0.238*** | -0.268 | -1.702*** | -3.571** | 0.0667*** | 0.0650*** | -0.0327*** | -0.0197 | | Gross Enrolment Ratio Urban (0.106) (0.271) (1.003) (2.470) (0.00682) (0.0138) (0.0193) (0.0677) Urban -0.00262*** -0.00399** 0.000563 -0.00496 -0.000430*** -0.000452*** -0.000452*** -0.000452*** -0.000416* (0.000638) (0.00181) (0.00681) (0.0176) (6.68e-05) (0.000108) (6.30e-05) (0.000247) -0.000457 -0.00117 -0.00192 -0.00903 3.89e-06 -1.95e-05 -0.000144*** -0.000112 | Literacy | (0.0875) | (0.186) | (0.638) | (1.805) | (0.00822) | (0.0161) | (0.00849) | (0.0227) | | Urban (0.106) (0.271) (1.003) (2.470) (0.00682) (0.0138) (0.0193) (0.0677) -0.00262*** -0.00399** 0.000563 -0.00496 -0.000430***-0.000452***-0.000452*** -0.000416* (0.000638) (0.00181) (0.00681) (0.0176) (6.68e-05) (0.000108) (6.30e-05) (0.000247) -0.000457 -0.00117 -0.00192 -0.00903 3.89e-06 -1.95e-05 -0.000144*** -0.000112 | Construction of Butter | -0.0501 | -0.00274 | 0.266 | 0.419 | 0.0333*** | 0.0380*** | 0.147*** | 0.102 | | Urban -0.00262*** -0.00399** 0.000563 -0.00496 -0.000430***-0.000452***-0.000452*** -0.000416* (0.000638) (0.00181) (0.00681) (0.0176) (6.68e-05) (0.000108) (6.30e-05) (0.000247) -0.000457 -0.00117 -0.00192 -0.00903 3.89e-06 -1.95e-05 -0.000144*** -0.000112 | Gross Enrolment Ratio | | (0.271) | (1.003) | (2.470) | (0.00682) | (0.0138) | (0.0193) | | | (0.000638) (0.00181) (0.00681) (0.0176) (6.68e-05) (0.000108) (6.30e-05) (0.000247) | 11.4 | -0.00262*** | -0.00399** | 0.000563 | -0.00496 | -0.000430*** | -0.000452*** | | -0.000416* | | 0.000457 -0.00117 -0.00192 -0.00903 3.89e-06 -1.95e-05 -0.000144*** -0.000112 | Urban | (0.000638) | (0.00181) | (0.00681) | | (6.68e-05) | (0.000108) | (6.30e-05) | (0.000247) | | | T., . 4. | -0.000457 | -0.00117 | -0.00192 | -0.00903 | 3.89e-06 | -1.95e-05 | -0.000144*** | -0.000112 | | Trade (0.000379) (0.000999) (0.00339) (0.00864) (2.58e-05) (5.70e-05) (4.51e-05) (0.000116) | irade | (0.000379) | (0.000999) | (0.00339) | (0.00864) | (2.58e-05) | (5.70e-05) | (4.51e-05) | | Standard errors in parentheses, period dummies not shown ^{***} p<0.01, ** p<0.05, * p<0.1 Table 6. Coefficients of 3SLS and Clustered Error IV Convergence Estimates (continued) No independent variable excluded | | IV | 3SLS | IV | 3SLS | IV | 3SLS | IV | 3SLS | |--|-----------------------|-----------------------|--------------------|--------------------|-------------|-------------|-----------------------------|-----------------------------| | Variable Dependiente
Tasa de cambio de: | Log GDP
per Capita | Log GDP
per Capita | Life
Expectancy | Life
Expectancy | Literacy | Literacy | Gross
Enrolment
Ratio |
Gross
Enrolment
Ratio | | Executive Constraint | 0.0399*** | 0.0411 | 0.0260 | 0.0425 | -0.00188** | -0.00178* | 0.000108 | -0.000886 | | executive Constraint | (0.0124) | (0.0266) | (0.118) | (0.212) | (0.000801) | (0.00107) | (0.00136) | (0.00294) | | Democracy | -0.0321*** | -0.0395* | 0.110 | -0.0683 | 0.000560 | 0.000213 | -0.00137 | 0.000323 | | Democracy | (0.00976) | (0.0208) | (0.116) | (0.184) | (0.000609) | (0.000959) | (0.00110) | (0.00250) | | FDI inflows | 0.00127 | 0.0141 | -0.125 | -0.0646 | 0.00122** | 0.00136** | 0.00348*** | 0.00307* | | rbi illilows | (0.00692) | (0.0187) | (0.0791) | (0.126) | (0.000496) | (0.000674) | (0.000989) | (0.00158) | | FDI outflows | 0.0244 | 0.148 | -2.635*** | -2.052* | 0.0308*** | 0.0358** | -0.00655*** | -0.00873 | | rbi outnows | (0.0372) | (0.132) | (0.536) | (1.161) | (0.00852) | (0.0140) | (0.00210) | (0.00839) | | Pop Density in Agr Land | 0.00607 | 0.0121 | -0.0568 | 0.0659 | -0.000212 | -0.000781 | 0.00201*** | 0.00264 | | (log) | (0.00557) | (0.0136) | (0.0391) | (0.127) | (0.000436) | (0.000717) | (0.000591) | (0.00168) | | Pop Density Growth in Agr | -0.460 | -1.403 | -15.33 | -21.22 | 0.0268 | 0.0209 | -0.0401 | -0.0419 | | Land (log) | (0.966) | (2.257) | (9.963) | (17.13) | (0.0420) | (0.0757) | (0.0880) | (0.178) | | Inflation | 0.000403 | 0.000330 | 0.00360*** | 0.00542* | 3.04e-05*** | 1.55e-05 | 7.76e-05*** | 6.63e-05 | | illiation | (0.000314) | (0.000463) | (0.000831) | (0.00280) | (7.86e-06) | (2.83e-05) | (8.88e-06) | (5.32e-05) | | Risk Premium | -0.00405 | -0.00470 | -0.0294 | -0.0408 | -0.000577* | -0.000607 | 0.00131*** | 0.000474 | | KISK Premium | (0.00260) | (0.00582) | (0.0296) | (0.0542) | (0.000320) | (0.000417) | (0.000404) | (0.000951) | | Aids dummy | 0.0233*** | 0.0508*** | -0.410*** | 0.0451 | -0.00108 | -0.00510*** | -0.00111 | 0.00299 | | Alus dullilly | (0.00722) | (0.0142) | (0.0898) | (0.166) | (0.000798) | (0.00180) | (0.00123) | (0.00383) | | Landlocked | -0.00378** | -0.00384 | -0.0565* | -0.0694 | -0.000208 | 0.000283 | -7.01e-05 | 0.000306 | | Landiocked | (0.00175) | (0.00617) | (0.0310) | (0.0654) | (0.000335) | (0.000727) | (0.000704) | (0.00149) | | Tropical | -0.0110*** | -0.00444 | -0.0118 | -0.0143 | -0.00117*** | -0.00190*** | 0.000218 | -0.000467 | | Порісаі | (0.00245) | (0.00574) | (0.0246) | (0.0590) | (0.000264) | (0.000696) | (0.000610) | (0.00138) | | Latitude | 0.000119*** | 0.000173 | 0.000648* | 0.00117 | 1.14e-05*** | 1.11e-05 | -3.18e-05*** | -2.59e-05 | | Latitude | (3.83e-05) | (0.000107) | (0.000365) | (0.00107) | (2.88e-06) | (1.20e-05) | (1.10e-05) | (2.63e-05) | | Dummy 1075 | -0.0160*** | -0.0182 | 0.104*** | 0.0911 | -2.06e-05 | -0.000759 | -0.00294** | -0.00246 | | Dummy 1975 | (0.00576) | (0.0128) | (0.0380) | (0.120) | (0.000566) | (0.00161) | (0.00116) | (0.00281) | | Dummy 1980 | -0.0379*** | -0.0383*** | 0.0514 | 0.0406 | 0.000313 | 0.000230 | -0.00633*** | -0.00524* | | Dullilly 1980 | (0.00573) | (0.0131) | (0.0379) | (0.123) | (0.000594) | (0.00160) | (0.00140) | (0.00291) | | Dummy 1985 | -0.0276*** | -0.0300** | -0.0812 | -0.0807 | 0.00123* | 0.00163 | -0.00699*** | -0.00576** | | Dullilly 1983 | (0.00586) | (0.0125) | (0.0593) | (0.118) | (0.000630) | (0.00154) | (0.00141) | (0.00279) | | Dummy 1990 | -0.0222*** | -0.0287** | -0.106** | -0.119 | 0.00122* | 0.00142 | -0.00138 | -0.000402 | | Dunning 1990 | (0.00656) | (0.0128) | (0.0508) | (0.121) | (0.000641) | (0.00162) | (0.00137) | (0.00280) | | Dummy 100E | -0.000493 | -0.00980 | -0.0382 | -0.0174 | 0.00304*** | 0.00266 | 6.64e-05 | 0.000645 | | Dummy 1995 | (0.00750) | (0.0133) | (0.0653) | (0.130) | (0.000640) | (0.00168) | (0.00141) | (0.00294) | | D.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | -0.00705 | -0.0118 | -0.0714 | 0.0382 | 0.00318*** | 0.00247 | -0.00262 | -0.00258 | | Dummy 2000 | (0.00614) | (0.0150) | (0.0664) | (0.150) | (0.000861) | (0.00185) | (0.00179) | (0.00331) | | Constant | -0.563*** | -0.734*** | -1.032 | -2.721 | -0.0383*** | -0.0278** | -0.0716*** | -0.0632** | | Constant | (0.0844) | (0.240) | (0.842) | (2.410) | (0.00531) | (0.0124) | (0.0122) | (0.0321) | Standard errors in parentheses, period dummies not shown ^{***} p<0.01, ** p<0.05, * p<0.1 Table 7. Sign and Significance Patterns for Coefficients of Clustered Error IV Convergence Estimates Omitted Variables Marked in Grav | | | | | | Omitt | Omitted variables iviarked in Gray | es Marke | d In Gray | | | | | | | | | |-------------------------------|-----------|---------------|--------------------|------------|-----------|--|-------------|------------|-------------|----------|-----------|----------|---------|------------------------------|-----------|--------| | Interacted Variables | 7 | og GDP | Log GDP per Capita | æ | | Life Expectancy | ectancy | | | Literacy | acy | | Gre | Gross Enrolment Ratio | Iment Rat | oi: | | Log GDP per Capita | ***(-) | ***(-) | ***(-) | ***(-) | **(-) | **(-) | **(-) | ***(-) | ***(-) | ***(-) | ***(-) | | ***(-) | ***(-) | ***(-) | ***(-) | | Life Expectancy | | | | | | | | | **(-) | * * (-) | * * * (-) | | | | | | | Literacy | * * *(+) | ***(+) ***(+) | ***(+) | | *(+) | *(+) | *(+) | **(+) | | | **(-) | ***(-) | *(+) | | | | | Gross Enrolment Ratio | | | | * * *(+) | | | | | * * *(-) | * * (-) | * * *(-) | * * *(-) | | | | | | Urban | * * (+) | ***(+) ***(+) | **(+) | | | | | | * * (+) | * * (+) | * * (+) | | * * (+) | **(+) | * * (+) | | | Trade | | | | | | | | | | | | | * * (+) | *(+) | **(+) | ***(+) | | Executive Constraint | * * (-) | | | * * (-) | | * * (-) | | | **(+) | **(+) | | * * (+) | | *(+) | | | | Democracy | * * * (+) | | | * * * (+) | | | **(-) | | | | * * *(+) | | *(+) | | **(+) | | | FDI inflows | | | | *(+) | | | **(+) | *(+) | *(-) | *(-) | *(-) | | **(-) | **(-) | ***(-) | **(-) | | FDI outflows | | | | | ***(+) | ***(+) | * * * (+) | * * (+) | **(-) | **(-) | **(-) | ***(-) | **(+) | ***(+) | * * *(+) | **(+) | | Pop Density in Agr Land (log) | | | | **(-) | **(+) | **(+) | *(+) | * (+) | | | **(+) | | **(-) | * * (-) | **(-) | ***(-) | | Pop Density Growth | | | | | | * * (+) | **(+) | *(+) | | *(-) | **(-) | | | *(-) | *(-) | (-) | | Risk Premium | | **(+) | **(+) | * *(+) | | | | | *(+) | **(+) | | | * * (-) | **(-) | **(-) | **(-) | | Inflation | | | | | * * (-) | **(-) | **(-) | **(-) | **(-) | **(-) | **(-) | | **(-) | * * (-) | **(-) | **(-) | | Non-Interacted Controls | | | | | | | | | | | | | | | | | | AIDS dummy | ***(+) | ***(+) | ***(+) | ***(+) | ***(-) | ***(-) | ***(-) | ***(-) | | | | | | | | (-) | | Landlocked | **(-) | | | | *(-) | | | **(-) | | | | **(+) | | | | | | Tropical | * * *(-) | **(-) | **(-) | **(-) | | | | | **(-) | | **(-) | ***(-) | | | *(+) | | | Latitude | * * * (+) | * * (+) | **(+) | * * * (+) | *(+) | **(+) | *(+) | **(+) | * * (+) | ***(+) | **(+) | *(+) | **(-) | **(-) | **(-) | ***(-) | | | | | Sig | gnificance | indicated | Significance indicated as follows: *** p< 0.01 , ** p< 0.05 , * p< 0.1 |)>d *** :S. | 0.01, ** p | 1<0.05, * 1 | 0<0.1 | | | | | | | | | | | , | , | | | • | | | | | | | | | | **Table 8.1 Log GDP per Capita** Instrumented Quantile Regression q70 q90 Log GDP per Capita | Life Expectancy | 0.0551*** | 0.0438*** | 0.0353*** | 0.0369*** | 0.0407*** | 0.0348*** | 0.0442*** | 0.0495*** | 0.0542*** | |------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | (0.00677) | (0.00790) | (0.00885) | (0.00615) | (0.00576) | (0.00576) | (0.00672) | (0.00920) | (0.0114) | | Literacy | 1.225*** | 1.076*** | 0.878*** | 0.984*** | 0.795*** | 0.797*** | 0.603*** | 0.517** | 0.779*** | | | (0.292) | (0.302) | (0.328) | (0.226) | (0.204) | (0.193) | (0.212) | (0.259) | (0.292) | | Gross Enrolment | -0.976** | -0.514 | -0.266 | -0.0562 | 0.0777 | 0.155 | 0.583* | 1.232*** | 0.705 | | Ratio | (0.412) | (0.416) | (0.475) | (0.330) | (0.307) | (0.295) | (0.329) | (0.434) | (0.480) | | Urban | 0.0163*** | 0.0186*** | 0.0209*** | 0.0185*** | 0.0208*** | 0.0225*** | 0.0184*** | 0.0116*** | 0.00584 | | | (0.00198) | (0.00212) | (0.00228) | (0.00163) | (0.00156) | (0.00157) | (0.00188) | (0.00278) | (0.00375) | | Trade | -0.00173** | 0.000368 | 0.00244** | 0.000760 | 0.000883 | 0.00113 | 0.00121 | 0.00198 | 0.00400** | | | (0.000875) | (0.00105) | (0.00111) | (0.000784) | (0.000763) | (0.000771) | (0.000892) | (0.00125) | (0.00155) | | Executive | 0.143*** | 0.102*** | 0.0875*** | 0.0784*** | 0.101*** | 0.0997*** | 0.0993*** | 0.0727** | 0.101*** | | Constraint | (0.0161) | (0.0198) | (0.0249) | (0.0186) | (0.0185) | (0.0187) | (0.0218) | (0.0307) | (0.0366) | | Democracy | -0.0675*** | -0.0354** | -0.0226 | -0.0169 | -0.0309** | -0.0288** | -0.0451*** | -0.0619*** | -0.0789*** | | | (0.0122) | (0.0143) | (0.0172) | (0.0128) | (0.0128) | (0.0129) | (0.0150) | (0.0204) | (0.0247) | | FDI inflows | -0.0521*** | -0.0803*** | -0.0415** | -0.0230* | -0.0324*** | -0.0452*** | -0.0468*** | -0.0282 | -0.0208 | | | (0.0155) | (0.0169) | (0.0180) | (0.0124) | (0.0117) | (0.0119) | (0.0146) | (0.0212) | (0.0246) | | FDI outflows | 0.173*** | 0.124*** | 0.0665* | 0.0192 | 0.0303 | 0.0200 | 0.00366 | -0.0261 | -0.0834 | | | (0.0252) | (0.0316) | (0.0368) | (0.0249) | (0.0253) | (0.0253) | (0.0311) | (0.0424) | (0.0523) | | Agric Density | -0.101*** | -0.0535*** | -0.0444* | -0.0170 | -0.0233 | 0.00303 | -0.00858 | 0.00306 | -0.0103 | | | (0.0187) | (0.0204) | (0.0228) | (0.0165) | (0.0156) | (0.0158) | (0.0183) | (0.0252) | (0.0295) | | Agric Dens Growth | -10.41*** | -11.90*** | -0.759 | 2.625 | 8.179*** | 9.211*** | 8.750*** | 6.976* | 8.032 | | | (3.399) | (3.714) | (3.873) | (2.743) | (2.549) | (2.499) | (2.898) | (4.034) | (5.151) | | Risk Premium | -0.00132 | -0.0110*** | -0.00836* | -0.0112*** | -0.0165*** | -0.0196*** | -0.0189*** | -0.0123*** | -0.00355 |
 | (0.00327) | (0.00401) | (0.00454) | (0.00357) | (0.00352) | (0.00342) | (0.00369) | (0.00418) | (0.00528) | | Inflation | 0.00119*** | 0.000644* | 0.000358 | 0.000127 | -3.53e-05 | 2.44e-05 | 0.000115 | 0.000160 | 0.000215 | | | (0.000297) | (0.000344) | (0.000391) | (0.000277) | (0.000269) | (0.000269) | (0.000318) | (0.000433) | (0.000528) | | Aids Dummy | 0.246** | 0.0120 | -0.137 | -0.183* | -0.0989 | -0.0930 | 0.160 | 0.270* | 0.155 | | | (0.106) | (0.128) | (0.143) | (0.0999) | (0.0917) | (0.0898) | (0.106) | (0.140) | (0.170) | | Landlocked | 0.225*** | 0.220*** | 0.132* | 0.163*** | 0.144*** | 0.139*** | 0.120** | 0.164** | 0.114 | | | (0.0646) | (0.0713) | (0.0771) | (0.0540) | (0.0524) | (0.0522) | (0.0607) | (0.0816) | (0.0944) | | Tropical | 0.1000 | 0.120 | -0.0480 | -0.0993* | -0.0863 | -0.0803 | -0.0841 | -0.180** | -0.374*** | | | (0.0712) | (0.0768) | (0.0840) | (0.0577) | (0.0536) | (0.0504) | (0.0570) | (0.0750) | (0.0931) | | Latitude | 0.0121*** | 0.00961*** | 0.00984*** | 0.0100*** | 0.00672*** | 0.00612*** | 0.00490*** | 0.00405*** | 0.00402*** | | | (0.00105) | (0.00110) | (0.00127) | (0.000923) | (0.000875) | (0.000842) | (0.000961) | (0.00120) | (0.00147) | | Constant | 2.727*** | 3.503*** | 3.877*** | 3.960*** | 3.698*** | 4.066*** | 3.742*** | 3.805*** | 4.057*** | | | (0.310) | (0.371) | (0.421) | (0.302) | (0.290) | (0.293) | (0.345) | (0.474) | (0.629) | | Observations | 595 | 595 | 595 | 595 | 595 | 595 | 595 | 595 | 595 | Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 **Table 8.2 Life Expectancy** Instrumented Quantile Regression | | α10 | 020 | d30 | מאס | מינטופטייטוייטוייטויטו | | 070 | 080 | 060 | |------------------------|-----------|-----------|-----------|---|------------------------|-----------|-------------|-------------|------------| | Log GDP per Capita | 2.111** | 2.968*** | 2.077*** | 1.867*** | 1.679*** | 1.761*** | 2.225*** | 1.992*** | 2.047*** | | | (0.902) | (0.452) | (0.393) | (0.341) | (0.478) | (0.464) | (0.458) | (0.284) | (0.315) | | Life Expectancy | | | | | | | | | | | Literacy | 16.22*** | 14.10*** | 16.26*** | 14.70*** | 14.48*** | 12.14*** | 10.76*** | 11.01*** | 8.456*** | | | (3.002) | (1.760) | (1.573) | (1.517) | (2.245) | (2.352) | (2.394) | (1.747) | (2.088) | | Gross Enrolment | -2.101 | -1.241 | -0.708 | 1.972 | 3.692 | 5.099 | 6.856* | 10.88*** | 18.05*** | | Ratio | (4.329) | (2.530) | (2.378) | (2.328) | (3.457) | (3.541) | (3.552) | (2.503) | (2.847) | | Urban | 0.0480 | 0.0378** | 0.0606*** | 0.0723*** | 0.0817*** | 0.100*** | 0.0867*** | 0.0764*** | 0.0512*** | | | (0.0337) | (0.0170) | (0.0148) | (0.0131) | (0.0186) | (0.0181) | (0.0182) | (0.0122) | (0.0138) | | Trade | 0.00790 | 0.0186** | 0.0248*** | 0.0328*** | 0.0299*** | 0.0241*** | 0.0271*** | 0.0304*** | 0.0259*** | | | (0.0127) | (0.00760) | (0.00669) | (0.00590) | (0.00850) | (0.00840) | (0.00834) | (0.00548) | (0.00593) | | Executive | -1.713*** | -1.228*** | -1.054*** | -0.774** | -0.661*** | -0.782*** | -0.687*** | -0.877*** | -0.474*** | | Constraint | (0.287) | (0.164) | (0.153) | (0.144) | (0.206) | (0.207) | (0.203) | (0.134) | (0.142) | | | 1.597*** | 1.151*** | 1.044*** | 0.852*** | 0.683*** | 0.752*** | 0.691*** | 0.668*** | 0.399*** | | | (0.198) | (0.112) | (0.0983) | (0.0928) | (0.134) | (0.135) | (0.134) | (8060.0) | (0.102) | | FDI inflows | -0.0523 | -0.106 | -0.0333 | -0.0919 | -0.0157 | 0.131 | 0.242** | 0.273*** | 0.367*** | | | (0.205) | (0.130) | (0.120) | (0.105) | (0.136) | (0.125) | (0.117) | (0.0767) | (0.0737) | | FDI outflows | -0.161 | -0.228 | -0.474** | -0.547*** | -0.674** | -0.884*** | ***066.0- | -1.220*** | -1.202*** | | | (0.338) | (0.277) | (0.233) | (0.209) | (0.286) | (0.277) | (0.277) | (0.201) | (0.235) | | Agric Density | 0.459 | 0.513*** | 0.487*** | 0.450*** | 0.539*** | 0.750*** | 0.647*** | 0.660*** | 0.375*** | | | (0.294) | (0.160) | (0.139) | (0.125) | (0.176) | (0.175) | (0.170) | (0.111) | (0.105) | | Agric Dens Growth | -150.3*** | -108.2** | -87.67*** | -82.61*** | -65.10** | -56.68** | -45.74* | -28.57 | -35.30* | | | (44.94) | (26.67) | (22.27) | (20.25) | (28.26) | (27.88) | (26.76) | (18.13) | (19.21) | | Inflation | 0.0871* | 0.0556 | 0.0205 | -0.00300 | -0.0271 | -0.0518 | -0.0514 | -0.0509** | -0.0283 | | | (0.0519) | (0.0421) | (0.0323) | (0.0297) | (0.0405) | (0.0390) | (0.0320) | (0.0205) | (0.0219) | | Risk Premium | -0.00578 | -0.00574* | -0.00383 | -0.00402* | -0.00500 | -0.00528* | -0.00834*** | -0.00803*** | -0.0103*** | | | (0.00543) | (0.00301) | (0.00253) | (0.00226) | (0.00305) | (0.00288) | (0.00269) | (0.00163) | (0.00174) | | Aids Dummy | -5.242*** | -5.565*** | -4.712*** | -3.883*** | -4.422*** | -4.226*** | -5.140*** | -5.187*** | -5.357*** | | | (1.719) | (0.888) | (0.820) | (0.722) | (1.032) | (0.960) | (0.966) | (0.638) | (0.745) | | Landlocked | -3.957*** | -2.508*** | -2.765*** | -1.953*** | -1.828*** | -0.646 | 0.0977 | *209.0 | 0.558 | | | (0.966) | (0.534) | (0.457) | (0.412) | (0.587) | (0.562) | (0.550) | (0.365) | (0.429) | | Tropical | -3.058*** | -3.027*** | -2.560*** | -2.030*** | -1.938*** | -1.621*** | -1.316** | -1.659*** | -1.609*** | | | (0.837) | (0.451) | (0.410) | (0.401) | (0.595) | (0.595) | (0.629) | (0.445) | (0.525) | | Latitude | -0.00367 | -0.00553 | 0.00608 | 0.00824 | 0.0140 | 0.0238** | 0.0135 | 0.0136** | 0.0211*** | | | (0.0207) | (0.0104) | (0.00869) | (0.00775) | (0.0105) | (0.00988) | (0.00916) | (0.00564) | (0.00517) | | Constant | 35.19*** | 29.32*** | 33.42** | 33.74*** | 35.01*** | 35.42*** | 32.25*** | 33.68*** | 32.19*** | | | (4.903) | (2.780) | (2.410) | (2.148) | (3.115) | (3.102) | (3.138) | (2.035) | (2.366) | | Observations | 595 | 595 | 595 | 595 | 595 | 595 | 595 | 595 | 595 | Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 **Table 8.3 Literacy**Instrumented Quantile Regression | | 2 | 30 | 20 | 240 | 250 | 260 | 270 | 000 | 200 | |------------------------|-------------|-------------|--------------|-------------|--------------|--------------|--------------|--------------|-------------| | Log GDP per Capita | 0.0417*** | 0.0370** | 0.0372** | 0.0413*** | 0.0399*** | 0.0402** | 0.0329*** | 0.0192** | 0.0243** | | - | (0.0159) | (0.0163) | (0.0151) | (0.0125) | (0.0127) | (0.0156) | (0.0120) | (0.00911) | (0.0105) | | Life Expectancy | 0.00181 | 0.00724*** | 0.00703*** | 0.00951*** | 0.0112*** | 0.0111*** | 0.0119*** | 0.0123*** | 0.0107*** | | | (0.00202) | (0.00185) | (0.00180) | (0.00154) | (0.00166) | (0.00221) | (0.00192) | (0.00160) | (0.00210) | | Literacy | | | | | | | | | | | Gross Enrolment | 1.117*** | 1.028*** | 1.113*** | 0.989*** | 0.948*** | 0.955*** | 0.810*** | 0.697*** | 0.554*** | | Ratio | (0.0811) | (0.0861) | (0.0795) | (0.0676) | (0.0705) | (0.0919) | (0.0800) | (0.0648) | (0.0807) | | Urban | -3.29e-05 | -0.000595 | -0.00132** | -0.00145*** | -0.00221*** | -0.00215*** | -0.00217*** | -0.00155*** | -0.00132*** | | | (0.000549) | (0.000563) | (0.000557) | (0.000478) | (0.000481) | (0.000604) | (0.000458) | (0.000354) | (0.000443) | | Trade | -0.00130*** | -0.00114*** | -0.000996*** | -0.00100*** | -0.000943*** | -0.000666** | -6.60e-05 | 0.000289 | 0.000253 | | | (0.000253) | (0.000282) | (0.000257) | (0.000213) | (0.000219) | (0.000277) | (0.000224) | (0.000179) | (0.000234) | | Executive | 0.00685 | 0.0109 | 0.0111* | 0.0126** | 0.00806 | 0.0131* | 0.0180*** | 0.0176*** | 0.0116** | | Constraint | (0.00746) | (0.00727) | (0.00656) | (0.00548) | (0.00545) | (0.00685) | (0.00564) | (0.00439) | (0.00500) | | | -0.00228 | -0.00506 | -0.00735 | -0.0120*** | -0.0121*** | -0.0158*** | -0.0176*** | -0.0162*** | -0.0122*** | | | (0.00510) | (0.00501) | (0.00449) | (0.00372) | (0.00372) | (0.00473) | (0.00397) | (0.00315) | (0.00381) | | FDI inflows | -0.00390 | -0.00756* | -0.0124*** | -0.00421 | -0.00324 | -0.00210 | -0.00424 | -0.00624*** | -0.00283 | | | (0.00379) | (0.00385) | (0.00360) | (0.00314) | (0.00334) | (0.00436) | (0.00303) | (0.00231) | (0.00267) | | FDI outflows | 0.0148* | 0.000911 | 0.00556 | -0.000975 | 0.00316 | -0.000901 | -0.00593 | -0.00385 | -0.00455 | | | (0.00830) | (0.00790) | (0.00814) | (0.00713) | (0.00731) | (0.00933) | (0.00778) | (0.00536) | (0.00625) | | Agric Density | 0.0199*** | 0.0107 | 0.00249 | 0.00483 | -0.00203 | -0.00478 | -0.00508 | -0.00313 | -0.000304 | | | (0.00669) | (0.00691) | (0.00577) | (0.00458) | (0.00454) | (0.00559) | (0.00462) | (0.00362) | (0.00429) | | Agric Dens Growth | -0.181 | 0.0363 | -1.172 | -1.401** | -2.130*** | -1.520* | -3.672*** | -4.264*** | -4.673*** | | | (0.832) | (0.939) | (0.827) | (0.696) | (0.721) | (0.910) | (0.737) | (0.603) | (0.752) | | Inflation | -0.000440 | -0.000336 | 0.000533 | 0.000721 | 0.00177* | 0.000922 | 3.10e-05 | 8.83e-05 | -0.000257 | | | (0.00107) | (0.00108) | (0.00102) | (0.000963) | (0.00104) | (0.00130) | (0.00116) | (0.000813) | (0.00129) | | Risk Premium | -6.08e-05 | -0.000129 | -0.000205** | -0.000165** | -0.000124 | -0.000137 | -7.20e-05 | -3.05e-05 | -6.31e-06 | | | (0.000132) | (0.000112) | (9.64e-05) | (7.88e-05) | (7.82e-05) | (9.51e-05) | (7.84e-05) | (6.24e-05) | (7.14e-05) | | Aids Dummy | 0.0208 | 0.0587* | 0.0255 | 0.0218 | 0.0112 | 0.0100 | -0.00794 | -0.00208 | -0.0299 | | | (0.0201) | (0.0319) | (0.0315) | (0.0265) | (0.0265) | (0.0342) | (0.0281) | (0.0223) | (0.0283) | | Landlocked | 0.0455*** | 0.0396** | 0.0338** | 0.0526*** | 0.0424*** | 0.0445** | 0.0311* | 0.0257** | 0.0245 | | | (0.0174) | (0.0179) | (0.0168) | (0.0143) | (0.0150) | (0.0195) | (0.0163) | (0.0125) | (0.0160) | | Tropical | 0.144*** | 0.131*** | 0.116*** | 0.0931*** | 0.0654*** | 0.0552*** | 0.0449*** | 0.0472*** | 0.0305** | | | (0.0184) | (0.0200) | (0.0185) | (0.0149) | (0.0146) | (0.0177) | (0.0149) | (0.0120) | (0.0147) | | Latitude | -0.00109*** | -0.000857** | -0.00106*** | -0.00120*** | -0.00123*** | -0.000978*** | -0.000723*** | -0.000635*** | -0.000585** |
| | (0.000360) | (0.000348) | (0.000319) | (0.000257) | (0.000262) | (0.000325) | (0.000276) | (0.000224) | (0.000271) | | Constant | -0.504*** | -0.702*** | -0.653*** | -0.713*** | -0.698*** | -0.714*** | -0.584*** | -0.437*** | -0.256** | | | (0.0965) | (0.117) | (0.104) | (0.0859) | (0.0873) | (0.110) | (0.0884) | (0.0718) | (0.0998) | | Observations | 595 | 595 | 595 | 595 | 595 | 595 | 595 | 595 | 595 | Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 Table 8.4 Gross Enrolment Ratio Instrumented Quantile Regression | | a10 | a20 | a30 | α40 | a50 | 090 | a70 | 080 | 06b | |------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|-------------| | Log GDP per Capita | 0.0227*** | 0.0213*** | 0.0153** | 0.00485 | -0.00184 | -0.00295 | -0.00487 | 0.00571 | 0.0107 | | | (0.00833) | (0.00804) | (0.00714) | (0.00885) | (0.0111) | (0.00947) | (0.0123) | (0.0143) | (0.0124) | | Life Expectancy | 0.00253** | -3.56e-06 | -0.000575 | 0.00106 | 0.000896 | 0.00265** | 0.00412** | 0.00423** | 0.00615*** | | | (0.00105) | (0.00122) | (0.000988) | (0.00123) | (0.00147) | (0.00127) | (0.00161) | (0.00177) | (0.00188) | | Literacy | 0.322*** | 0.385*** | 0.418*** | 0.428*** | 0.460*** | 0.454*** | 0.454*** | 0.463*** | 0.431*** | | | (0.0323) | (0.0311) | (0.0265) | (0.0333) | (0.0402) | (0.0354) | (0.0462) | (0.0533) | (0.0564) | | Gross Enrolment | | | | | | | | | | | Ratio | | | | | | | | | | | Urban | 0.00243*** | 0.00205 *** | 0.00181*** | 0.00137*** | 0.00156*** | 0.000869** | 0.000295 | -0.000672 | -0.00128*** | | | (0.000306) | (0.000296) | (0.000272) | (0.000336) | (0.000409) | (0.000345) | (0.000450) | (0.000513) | (0.000447) | | Trade | 0.000728*** | 0.000537*** | 0.000573*** | 0.000327** | 0.000366** | 0.000304* | 0.000179 | 1.82e-05 | -0.000143 | | | (0.000174) | (0.000147) | (0.000123) | (0.000151) | (0.000186) | (0.000158) | (0.000200) | (0.000238) | (0.000221) | | Executive | -0.00546 | -0.00236 | -0.00177 | -0.00429 | -0.00554 | -0.00895** | -0.00489 | -0.00607 | 0.00651 | | Constraint | (0.00430) | (0.00398) | (0.00324) | (0.00388) | (0.00462) | (0.00392) | (0.00493) | (0.00594) | (0.00543) | | | 0.00600** | 0.00440 | 0.00525** | 0.00595** | 0.00701** | 0.00754*** | 0.00480 | 0.00529 | -0.00662* | | | (0.00303) | (0.00275) | (0.00220) | (0.00265) | (0.00313) | (0.00264) | (0.00325) | (0.00376) | (0.00347) | | FDI inflows | -0.00780** | 0.00434 | 0.00642*** | 0.00874*** | 0.00922*** | 0.00829*** | 0.0107*** | 0.0105 *** | 0.0165*** | | | (0.00305) | (0.00275) | (0.00214) | (0.00249) | (0.00287) | (0.00235) | (0.00278) | (0.00310) | (0.00291) | | FDI outflows | 0.00609 | -0.00358 | -0.00419 | 0.00125 | 0.00163 | 0.00948* | 0.0215*** | 0.0232*** | 0.0361*** | | | (0.00628) | (0.00596) | (0.00471) | (0.00530) | (0.00607) | (0.00504) | (0.00594) | (0.00628) | (0.00640) | | Agric Density | 0.00185 | 0.0116*** | 0.00947*** | 0.00955*** | 0.0102*** | 0.00711** | 0.00393 | 0.00156 | 0.00191 | | | (0.00370) | (0.00308) | (0.00252) | (0.00312) | (0.00379) | (0.00338) | (0.00435) | (0.00535) | (0.00592) | | Agric Dens Growth | 1.590*** | 0.303 | -0.185 | 0.564 | 1.189* | 1.615*** | 2.502*** | 3.173*** | 3.660*** | | | (0.513) | (0.513) | (0.417) | (0.512) | (0.610) | (0.515) | (0.658) | (0.775) | (0.689) | | Inflation | -0.000743 | -0.000753 | -0.000682 | -0.000791 | -0.00101 | -0.000137 | -0.000452 | 0.00114 | 0.00381*** | | | (0.000949) | (0.000863) | (0.000665) | (0.000773) | (0.000868) | (0.000664) | (0.000780) | (0.000839) | (0.000768) | | Risk Premium | 0.000176*** | 0.000193*** | 0.000233*** | 0.000224*** | 0.000207*** | 0.000185*** | 0.000212*** | 0.000221** | 0.000230*** | | | (4.41e-05) | (4.58e-05) | (3.73e-05) | (4.90e-05) | (6.33e-05) | (5.74e-05) | (7.47e-05) | (8.80e-05) | (8.41e-05) | | Aids Dummy | 0.0714*** | 0.0928*** | 0.0784*** | 0.0730*** | 0.0647*** | 0.0507*** | 0.0464* | 0.0426 | 0.0322 | | | (0.0192) | (0.0178) | (0.0145) | (0.0184) | (0.0221) | (0.0188) | (0.0244) | (0.0265) | (0.0237) | | Landlocked | 0.000311 | 0.00264 | -0.0139 | -0.0228** | -0.0276** | -0.0308*** | -0.0265* | -0.0309** | -0.0272 | | | (0.0119) | (0.0108) | (0.00860) | (0.0106) | (0.0126) | (0.0106) | (0.0139) | (0.0151) | (0.0169) | | Tropical | -0.00927 | -0.0383*** | -0.0473*** | -0.0508*** | -0.0400*** | -0.0441*** | -0.0414*** | -0.0447*** | -0.0293** | | | (0.00955) | (0.00967) | (0.00817) | (0.0102) | (0.0126) | (0.0112) | (0.0143) | (0.0163) | (0.0129) | | Latitude | -6.64e-05 | 0.000114 | 0.000219 | 0.000134 | 0.000139 | -2.98e-05 | -0.000128 | 8.50e-06 | 0.000156 | | | (0.000229) | (0.000204) | (0.000163) | (0.000192) | (0.000228) | (0.000194) | (0.000249) | (0.000283) | (0.000285) | | Constant | -0.273*** | -0.0484 | 0.0458 | 0.0751 | 0.111 | 0.0728 | 0.0167 | -0.0171 | -0.129 | | | (0.0626) | (0.0591) | (0.0506) | (0.0641) | (0.0815) | (0.0708) | (0.0926) | (0.106) | (0.102) | | Observations | 595 | 595 | 595 | 595 | 595 | 595 | 595 | 595 | 595 | Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 Table 9. Summary and Comparison of Convergence and Quantile Estimates | Low Inflation | Low Risk Premium | Pop Density Growth | Pop Density in Agr Land (log) | FDI outflows | FDI inflows | Democracy | Executive Constraints | Trade | Urban | Gross Enrolment Ratio | Literacy | Life Expectancy | Log GDP per Capita | | | | | |---------------|------------------|--------------------|-------------------------------|--------------|-------------|------------------------|------------------------------|----------|------------|------------------------------|-------------------|-----------------|--------------------|--------------------------------|------------------|---|----------------------------| | | | | | | | (+) * * * | (-)**
* | | (+)
** | | (+)**
* | | (-)**
* | per Capita | | Cluster | | | (+)*** | | | (+)
* | (+)*** | | | | | | | (+)* | | (-)** | per Capita ancy | 7 | Clustered Error IV, no Variable Omitted | Convergence Estimate | | (+)*** | (-)* | | | (-)*** | (-)* | | (+)** | | (+)**
* | (-)*** | | (-)**
* | (-)** | Literacy | | o Variable C | e Estimate | | (+)*** | (+)*** | | (-)** | (+)**
* | (-)** | (+)* | | (+)*** | (+)*** | | (+)* | | (-)*** | Enrolment
Ratio | Gross | mitted | | | 6 | <u>'</u> | 1 | -2 | 2 | -6 | -7 | 9 | 1 | 8 | 0 | 9 | 9 | | per Capita ancy | | Indepe | | | 1 | ω | -6 | ∞ | -7 | ω | 9 | -9 | ∞ | ∞ | 2 | 9 | | 9 | ancy | - ii | Independent Variables Instrumented | Quantile Level Estimates | | 0 | 2 | Ϋ́ | 1 | 0 | ۵ | -6 | 4 | -6 | -7 | 9 | | ∞ | 9 | Literacy | | bles Instrum | el Estimates | | <u>'</u> | -9 | 5 | 5 | ω | 6 | 5 | <u>'</u> | 5 | 5 | | 9 | 5 | ω | Enrolment
Ratio | Gross | ented | | | 9 | ω | 0 | 2 | 6 | 0 | 4 | 2 | ω | 9 | 0 | 5 | 0 | 0 | Divergent
Coeffici | Sum of : | Convergenc | Summary of S | | 0 | 1 | 0 | ω | ω | 4 | 0 | з | 0 | 0 | 3 | 0 | ω | 11 | ent Convergent
Coefficients | Sum of Stars for | nvergence Estimates | mary of Significance in | | 5 | 7 | ∞ | 14 | 5 | 10 | 14 | 13 | 15 | 22 | 12 | 27 | 22 | 21 | Significant Coefficients | Positive | Quantile Estimates | Summary of Significance in | | -10 | <u></u> | -13 | -2 | -7 | -10 | -13 | -10 | -7 | & | <u></u> | 0 | 0 | 0 | Soefficients | Negative | stimates | gnificance in | | 24 | 12 | 21 | 21 | 21 | 24 | 31 | 28 | 25 | 39 | 16 | 32 | 25 | 32 | (sign independent) | Score | Significance | Total | ### Novedades ### DIVISIÓN DE ADMINISTRACIÓN PÚBLICA - Judith Mariscal y Federico Kuhlmann, *Effective Regulation in Latin American Countries. The cases of Chile, Mexico and Peru*, DTAP-236 - Ma. Amparo Casar, La otra reforma, DTAP-237 - Laura Sour y Fredy Girón, *Electoral Competition and the Flypaper Effect in Mexican Local Governments*, DTAP-238 - Laura Sour, Gender Equity, Enforcement Spending and Tax Compliance in Mexico, DTAP-239 - Lizbeth Herrera y José Ramón Gil García, *Implementación del e-gobierno en México*, DTAP-240 - Ma. Amparo Casar, Ignacio Marván y Khemvirg Puente, *La rendición de cuentas y el poder legislativo*, DTAP-241 - Sergio Cárdenas, Ignacio Lozano, Miguel Torres y Katsumi Yamaguchi, *Identificando beneficiarios de programas gubernamentales*, DTAP-242 - Sergio Cárdenas, Obstáculos para la calidad y la equidad: La corrupción en los sistemas educativos, DTAP-243 - Sergio Cárdenas, Separados y desiguales: Las escuelas de doble turno en México, DTAP-244 - María del Carmen Pardo, Los mecanismos de rendición de cuentas en el ámbito ejecutivo de gobierno, DTAP-245 ### DIVISIÓN DE ECONOMÍA - Antonio Jiménez, Notes on the Constrained Suboptimality Result by J. D. Geanakoplos and H. M. Polemarchakis (1986), DTE-466 - David Mayer, Long-Term Fundamentals of the 2008 Economic Crisis, DTE-467 - Luciana Moscoso, Labels for Misbehavior in a Population With Short-Run Players, DTE-468 - Daniel Ángeles y Rodolfo Cermeño, *Desempeño de estimadores alternativos en modelos GARCH bivariados con muestras finitas*, DTE-469 - Antonio Jiménez, *Strategic Information Acquisition in Networked Groups with "Informational Spillovers"*, DTE-470 - Rodolfo Cermeño y Mahetabel Solís, *Impacto de noticias macroeconómicas en el mercado accionario mexicano*, DTE-471 - Víctor Carreón, Juan Rosellón y Eric Zenón, *The Hydrocarbon Sector in Mexico: From the Abundance to the Uncertain Future*, DTE-472 - John Scott, The Incidence of Agricultural Subsidies in Mexico, DTE-473 - Alfredo Cuecuecha y John Scott, *The Effect of Agricultural Subsidies on Migration and Agricultural Employment*, DTE-474 - Alejandro Villagómez y Luis Navarro, *Política fiscal contracíclica en México durante la crisis reciente: Un análisis preliminar*, DTE-475 ### División de Estudios Internacionales - Alejandro Anaya, *Altos niveles de presión transnacional sobre México por violaciones de derechos humanos*,
DTEI-190 - Andrea Barrios, Food Security and WTO Obligations in the Light of the Present Food Crisis, DTEI-191 - Covadonga Meseguer y Abel Escribà Folch, *Learning, Political Regimes and the Liberalization of Trade*, DTEI-192 - Jorge Chabat, El narcotráfico en las relaciones México-Estados Unidos: Las fuentes del conflicto, DTEI-193 - Farid Kahhat y Carlos E. Pérez, *El Perú, Las Américas y el Mundo. Política exterior y opinión pública en el Perú 2008*, DTEI-194 - Jorge Chabat, La Iniciativa Mérida y la relación México-Estados Unidos: En busca de la confianza perdida, DTEI-195 - Jorge Chabat, La respuesta del gobierno de Calderón al desafío del narcotráfico: Entre lo malo y lo peor, DTEI-196 - Jorge Schiavon y Rafael Velázquez, *La creciente incidencia de la opinión pública en la política exterior de México: Teoría y realidad*, DTEI-197 - Rafael Velázquez y Karen Marín, *Política exterior y diplomacia parlamentaria: El caso de los puntos de acuerdo durante la LX Legislatura*, DTEI-198 - Alejandro Anaya, *Internalización de las normas internacionales de derechos humanos en México*, DTEI-199 ### División de Estudios Jurídicos - María Mercedes Albornoz, *Choice of Law in International Contracts in Latin American Legal Systems*, DTEJ-36 - Gustavo Fondevila, *Contacto y control del sistema de informantes policiales en México*, DTEJ-37 - Ana Elena Fierro y Adriana García, ¿Cómo sancionar a un servidor público del Distrito Federal y no morir en el intento?, DTEJ-38 - Ana Elena Fierro, Transparencia: Herramienta de la justicia, DTEJ-39 - Marcelo Bergman, *Procuración de justicia en las entidades federativas. La eficacia del gasto fiscal de las Procuradurías Estatales*, DTEJ-40 - José Antonio Caballero, *La estructura de la rendición de cuentas en México: Los poderes judiciales*, DTEJ-41 - Ana Laura Magaloni, *El ministerio público desde adentro: Rutinas y métodos de trabajo en las agencias del MP*, DTEJ-42 - Carlos Elizondo y Ana Laura Magaloni, *La forma es fondo. Cómo se nombran y cómo deciden los ministros de la Suprema Corte de Justicia de la Nación*, DTEJ-43 - María Mercedes Albornoz, *Utilidad y problemas actuales del crédito documentario*, DTEJ-44 - Gustavo Fondevila, "Madrinas" en el cine. Informantes y parapolicías en México, DTEJ-45 ### División de Estudios Políticos Francisco Javier Aparicio y Sandra Jessica Ley, *Electoral Institutions and Democratic Consolidation in the Mexican States, 1990-2004*, DTEP-208 Joy Langston, Las reformas electorales de 2007, DTEP-209 Carlos Elizondo, La industria del amparo fiscal, DTEP-210 María de la Luz Inclán, *Threats and Partial Concessions in the Exhaustion of the Zapatista Wave of Protest*, 1994-2003, DTEP-211 Andreas Schedler, *Inconsistencias contaminantes. Gobernación electoral y conflicto postelectoral en las elecciones presidenciales de 2006*, DTEP-212 Andreas Schedler, Academic Market Failure. Data Availability and Quality in Comparative Politics, DTEP-213 Allyson Benton, Politics and Sector-Specific Stock Market Performance, DTEP-214 Andreas Schedler, *The New Institutionalism in the Study of Authoritarian Regimes*, DTEP-215 Julio Ríos Figueroa, *Institutions for Constitutional Justice in Latin America*, DTEP-216 Francisco Javier Aparicio y Joy Langston, *Committee Leadership Selection without Seniority: The Mexican Case*, DTEP-217 ### DIVISIÓN DE HISTORIA Mauricio Tenorio, Around 1919 and in Mexico City, DTH-56 Michael Sauter, Between Outer Space and Human Space: Knowing Space as the Origin of Anthropology, DTH-57 Luis Medina, Federalismo mexicano para principiantes, DTH-58 Mónica Judith Sánchez, *Liberal Multiculturalism and the Problems of Difference in the Canadian Experience*, DTH-59 Luis Medina, *El Plan de Monterrey de 1855: un pronunciamiento regionalista en México*, DTH-60 Luis Medina, La organización de la Guardia Nacional en Nuevo León, DTH-61 Luis Medina, La Comanchería, DTH-62 Jean Meyer, Historia y ficción, hechos y quimeras, DTH-63 Ugo Pipitone, Kerala, desarrollo y descentralización, DTH-64 Ugo Pipitone, Criminalidad organizada e instituciones. El caso siciliano, DTH-65 ### Ventas El CIDE es una institución de educación superior especializada particularmente en las disciplinas de Economía, Administración Pública, Estudios Internacionales, Estudios Políticos, Historia y Estudios Jurídicos. El Centro publica, como producto del ejercicio intelectual de sus investigadores, libros, documentos de trabajo, y cuatro revistas especializadas: Gestión y Política Pública, Política y Gobierno, Economía Mexicana Nueva Época e Istor. Para adquirir cualquiera de estas publicaciones, le ofrecemos las siguientes opciones: | VENTAS DIRECTAS: | VENTAS EN LÍNEA: | |---|---| | Tel. Directo: 5081-4003
Tel: 5727-9800 Ext. 6094 y 6091
Fax: 5727 9800 Ext. 6314 | Librería virtual: www.e-cide.com | | Av. Constituyentes 1046, 1er piso,
Col. Lomas Altas, Del. Álvaro Obregón, 11950,
México, D.F. | Dudas y comentarios: publicaciones@cide.edu | ## iiColecciones completas!! Adquiere los CDs de las colecciones completas de los documentos de trabajo de todas las divisiones académicas del CIDE: Economía, Administración Pública, Estudios Internacionales, Estudios Políticos, Historia y Estudios Jurídicos. ¡Nuevo! ¡¡Arma tu CD!! Visita nuestra Librería Virtual <u>www.e-cide.com</u> y selecciona entre 10 y 20 documentos de trabajo. A partir de tu lista te enviaremos un CD con los documentos que elegiste.