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Abstract  

J. D. Geanakoplos and H. M. Polemarchakis (1986) prove the generic 
constrained suboptimality of equilibrium allocations in two period economies 
with incomplete markets. In these notes we provide a complete and 
detailed version of their proof with alternative arguments when needed. 

 

 

Resumen 

J. D. Geanakoplos y H. M. Polemarchakis (1986) demuestran la 
suboptimalidad restringida genérica de las asignaciones de equilibrio en 
economías de dos periodos con mercados incompletos. En estas notas 
proporcionamos una versión completa y detallada de su demostración, con 
argumentos alternativos allí donde es necesario. 
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1. Introduction

J. D. Geanakoplos and H. M. Polemarchakis (1986)—henceforth, GP—studied the optimal-
ity properties of a two period economy and proved an extremely important result, namely, they
showed that when real assets are traded in economies with two or more goods, and markets are
incomplete, then the equilibrium allocation is inefficient in the strong sense of being constrained
suboptimal, i.e., even if the “planner” is restricted to using the existing assets to obtain the re-
allocation, he is able to induce an improvement over the equilibrium allocation. That result has
become a cornerstone for subsequent research in the area.

The original proof by GP, though correct, skips many details in order to shorten the presen-
tation and we believe that understanding the problem requires one to have the relevant details.
In these notes we provide the said details as well as additional arguments that are required to
obtain various key implications that lead to the result. While in some parts of the presentation
we simply complete the arguments following the sketches given by GP, in other parts we pro-
vide alternative proofs and indicate what is not solved clearly by GP. Our endeavour is mainly
a pedagogical one that, hopefully, permits the reader to appreciate better the nature of the con-
tribution of GP.

The key feature of the proof is to show that, with incomplete markets, the individuals’ ratios
of marginal utilities of income across states differ generically, a fact which is used to show
that, if there are two or more commodities, then a relative price effect can be induced in such
a way as to cause a welfare improvement. To prove the former fact, GP perturb asset prices at
equilibrium when markets are incomplete by one. However, prices are not fundamentals that
can be used to parametrize the economy and, consequently, a generic result cannot be obtained
via that procedure; hence, in Section 5, Property 1, we provide an alternative proof of that result
which does not depend on the dimension of the market incompleteness and in which utilities
and endowments are perturbed.

Also, to show that a welfare improvement is derived from a relative price effect, one has to
prove that a property of linear independence is generically satisfied for a set of vectors derived
from the income effect vectors. This property is due to a fact that is independent of the incom-
pleteness of markets, and, to guarantee that it holds, an upper bound needs to be imposed on
the number of agents. We complete the proof of this fact given by GP by adding several extra
arguments. As in GP, to prove the said property of linear independence we use income effect
vectors in which cross-effects among different states are absent; hence, we assume that utilities
have an additively separable representation.

Recently, Citanna, Kajii and Villanacci (1998) prove the GP result without imposing an
upper bound on the number of agents. However, their description of the planner’s intervention
differs from the one used by GP in that (i) individuals are allowed to retrade the assets allocated
at the intervention, and (ii) the planner makes lump-sum transfers in some goods. As we show,
their result follows precisely because feature (ii) allows for a direct control of the income effect
vectors.

GP obtain their result for a generic set of economies where utilities and endowments are
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used as parameters. Geanakoplos, Magill, Quinzii and Drèze (1990) prove an analogous result
for an economy with production, a fact that permits them to consider a generic choice of the
endowment of both producers and consumers, but not of utility functions.

The rest of the paper is structured as follows. Section 2 presents the model and notation.
In Section 3 we introduce the tools that permit us to analyze the effects of the intervention on
utilities. In Section 4 we obtain two linear independence results derived from the description of
the economy. Section 5 deals with the individuals’ marginal utilities of income when markets
are incomplete. Section 6 presents a technical result on linear algebra. Section 7 completes the
proof by putting together the arguments presented earlier, and Section 8 concludes.

2. The Model

Consider a multigood, two period, pure exchange economy under uncertainty described
by the realization from a finite set of states of the world. Let S = {0,1, · · · , s, · · · ,S}, where
S + 1 := #S , be the set of states. There is a set H = {0,1, · · · ,h, · · · , H } of two period lived
agents who care about consumption and reallocate their income intertemporally by trading real
assets, defined below, before the state of nature is realized. Assets are traded in the first period
and consumption takes place only in the second period. L = {0,1, · · · , l , · · · ,L} is the set of
commodities and A = {0,1, · · · , a, · · · , A} is the set of real assets available in the economy. We
set H +1 := #H , L+1 := #L , and A+1 := #A .

Consumption of commodity l by individual h in state s is denoted by the non negative
number xh

l (s), xh(s) := (xh
l (s))l∈L ∈ RL+1+ indicates individual h’s consumption in state s, and

xh := (xh(s))s∈S ∈ R(L+1)(S+1)
+ stands for individual h’s consumption plan.1 Also, let us define

an allocation x := (xh)h∈H ∈R(L+1)(S+1)(H+1)
+ .

Individual h’s preferences are represented by a utility function uh :R(L+1)(S+1)
+ →R.

Agents’ endowments complete the formal description of the characteristics of the economy.
As in the case of the consumption variables, the numbers and the vectors ωh

l (s) ∈ R+, ωh(s) ∈
RL+1+ , ωh ∈R(L+1)(S+1)

+ and ω ∈R(L+1)(S+1)(H+1)
+ are used as notation for endowments.

The A+1 one period lived “inside” real assets pay a return in terms of commodity 0 in every
state s ∈S denoted, for the corresponding security a ∈A , by ra(s) ∈R. Let r (s) := (ra(s))a∈A ∈
RA+1 be the vector of asset returns in state s,
ra := (ra(s))s∈S ∈RS+1 be the vector of payoffs of asset a, and

R :=


r (0)T

r (1)T

...
r (S)T

≡ [r0 r1 · · · r A]

be the corresponding matrix, of dimension (S +1)× (A+1), of returns.
The quantity of asset a ∈A held by agent h ∈H is denoted by θh

a ∈R, and
θh := (θh

a )a∈A ∈ RA+1 denotes individual h’s portfolio. We also define an allocation of assets
θ := (θh)h∈H ∈R(A+1)(H+1).

1By convention, for any vector y ∈R(L+1)(S+1), y ≡ (
y0(0), · · · , yL(0), · · · , y0(S), · · · , yL(S)

)
.
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The following standard conditions are assumed to be satisfied by the agents’ preferences,
by the endowments, and by the asset structure:

Assumption 1 (A). (i) For all h ∈ H , ωh ∈ R(L+1)(S+1)
++ , uh is C 2, strictly monotone, differ-

entiably strictly quasi-concave, and the closure of the indifference curves do not intersect the
boundary of R(L+1)(S+1)

+ ;
(iia) R has full column rank;
(iib) there exists a portfolio θ ∈RA+1 such that R ·θ > 0;2

(iic) A < S;
(iii) every set of A +1 rows of R is linearly independent and there exists a portfolio θ ∈ RA+1

such that r (s) ·θ 6= 0 for all s ∈S .

We allow for free disposal of commodities, and denote the vector of commodity prices
by p := (p(s))s∈S ∈ R(L+1)(S+1)

+ \
{
0
}
, where p(s) := (p0(s), · · · , pL(s)) ∈ RL+1+ \

{
0
}
, and the non-

negative number pl (s) is the price of commodity l in state s. Also, let q := (q0, · · · , qA) ∈ RA+1

be the vector of asset prices, where qa is the price of asset a.
Given the nature of the problem, is easy to see that the price of commodity 0 can be chosen

as numeraire and normalized to 1 in every state s ∈ S , and asset prices can be normalized by
setting q0 = 1. Normalized prices are denoted with the label “̂”. Moreover, by Walras’ law, it
suffices to consider markets for just L commodites in every state, and A assets. Commodity 0

and asset 0 correspond to the “dropped” markets. We use the label “̂” for the truncated vectors,
where the numeraire commodity and asset are dropped from the vectors.

Now we can define equilibrium.

Definition 1 (CE). (x∗,θ∗, p̂∗, q̂∗) is a Competitive Equilibrium (CE) if:
(i) (a)

∑
h∈H (x̂h∗ − ω̂h) ≤ 0,

(b)
∑

h∈H θ̂h∗ = 0.
(ii) for every h ∈H ,

(a)
∑

a∈A q̂∗
a ·θh∗

a ≤ 0,∑
l∈L p̂∗

l (s) · [xh∗
l (s)−ωh

l (s)] ≤∑
a∈A ra(s) ·θh∗

a for all s ∈S ;
(b) if uh(xh) > uh(xh∗

), for some θh , then either∑
a∈A q̂∗

a ·θh
a > 0 or∑

l∈L p̂∗
l (s) · [xh

l (s)−ωh
l (s)] >∑

a∈A ra(s) ·θh
a for some s ∈S .

Definition 2 (SM-CE). Given an allocation of assets θ ∈R(A+1)(H+1) such that∑
h∈H θ

h = 0, (x∗∗, p̂∗∗) is a Spot Market Competitive Equilibrium (SM-CE) if:
(i)

∑
h∈H (x̂h∗∗ − ω̂h) ≤ 0.

(ii) for every h ∈H ,
(a)

∑
l∈L p̂∗∗

l (s) · [xh∗∗
l (s)−ωh

l (s)] ≤∑
a∈A ra(s) ·θh

a for all s ∈S ;
(b) if uh(xh) > uh(xh∗∗

), then

2When comparing two vectors x and y of the same dimension we use the symbols “<”, and “≤” to indicate
xn ≤ yn for all n but x 6= y , and xn ≤ yn for all n respectively.
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∑
l∈L p̂∗∗

l (s) · [xh
l (s)−ωh

l (s)] >∑
a∈A ra(s) ·θh

a for some s ∈S .

The notion of optimality used is the benchmark in the case where markets are incomplete.
It applies the concept of Pareto efficiency to the economy above, but imposing the restriction
that any alternative allocation be traded in the existing markets. This yields the criterion of
Constrained Pareto Optimality, due to Stiglitz (1982), and Newbery and Stiglitz (1982).

Definition 3 (CS). An allocation (x,θ) is Constrained Suboptimal (CS) if there exists an alter-
native allocation (x̃, θ̃) , and a price vector p̂ ∈R(L+1)(S+1)

+ \
{
0
}

such that:
(i) (x̃, p̂) is a SM-CE for the asset allocation θ̃,
(ii) (a) uh(x̃h) ≥ uh(xh) for every h ∈H ;

(b) uh′
(x̃h′

) > uh′
(xh′

) for some h′ ∈H .

Since we will obtain a generic result, we have to work with a set of economies rather than
with only one. Such a set is obtained via a parameterization of the economy based on both funda-
mentals, utilities and endowments. We denote the space of endowments by Ω⊂R(L+1)(S+1)(H+1)

++ ,
with the requirement that ωh

l (s) is bounded away from zero for every ω ∈Ω. Also, consider the
set

U :=
{

f :R(L+1)(S+1)
+ →R

∣∣ f satisfies Assumption A : (i)
}

,

and denote the space of utilities by U =U ×·· ·×U , (where the product is done H +1 times). An
element of U is a list of utility functions, u = (u0, · · · ,uH ). The space of economies considered
is Γ :=Ω×U .

We can now state the GP result; a detailed development of the proof is the subject mat-
ter of the rest of the paper. We remark that, by assuming that uh has an additively separable
representation, part of the proof is made easier.

Theorem 1 (T). Assume A, and that, for every agent h ∈ H , there is a Bernoulli function
vh :RL+1+ →R, and a probability distribution (πh(s))s∈S ∈RS+1+ , such that

uh(xh) :=∑
s∈S

πh(s) · vh(
xh(s)

)
for every consumption plan xh . Then, given 0 < 2L ≤ H < LS, and A ≥ 1, there exists a generic
set Γ̃⊂ Γ such that, for all economies (ω,u) ∈ Γ̃, every CE is CS.

3. Preliminaries

The objective of this section is to present the problem as one of intervention by a “central
planner” and to introduce the tools which will allow us to interpret its effects on the individuals’
welfare. As a first step, we present two results on the generic regularity of the set of economies
described.

We set a bit of notation. Denote by P and Q the vector spaces in which normalized commod-
ity and asset prices, respectively, lie. Given an economy (ω,u) ∈ Γ, and prices (p̂, q̂) ∈ P ×Q, we
define the non-numeraire excess demand for commodities and assets
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(ẑ,Θ̂) : Γ×P ×Q →RL(S+1) ×RA,

so that ẑ :=∑
h∈H (x̂h − ω̂h), and Θ̂ :=∑

h∈H θ̂h .
When we fix a specific value for the parameters and consider the resulting non-numeraire aggre-
gate excess demand, we write those parameters as a subscript, e.g., (ẑ,Θ̂)ω,u reflects the excess
demand function

(ẑ,Θ̂)ω,u : P ×Q →RL(S+1) ×RA,

for the specific economy (ω,u) ∈ Γ, and, similarly,
(ẑ,Θ̂)u :Ω×P ×Q →RL(S+1) ×RA

stands for the excess demand of the economy with a fixed utility parameter u ∈ U when the
endowment ω ∈Ω is allowed to vary.

A similar notational convention is used for any function parameterized by the fundamentals
of the economy.

Proposition 1 (Generic Regularity). Given Assumption A: (i), (iia), (iib), given u ∈U , there
exists a generic set ρ(u) ⊂Ω such that, for all ω ∈ ρ(u), the set of competitive equilibria is a
continuously differentiable function of ω.

Proof. Fix a utility parameter u ∈ U and consider the excess demand function of the non-
numeraire commodities and assets:

(ẑ,Θ̂)u :Ω×P ×Q →RL(S+1) ×RA.
Notice that (ẑ,Θ̂)−1

u (0) is the graph of the equilibrium correspondence.
Pick a vector (ω′, p̂ ′, q̂ ′) ∈ (ẑ,Θ̂)−1

u (0). We perturb endowments in two different ways in order
to show that the matrix D(ω,p̂,q̂)(ẑ,Θ̂)u , evaluated at (ω′, p̂ ′, q̂ ′), has full row rank.

First, consider the following choices:
(a) agent 0 ∈H ,
(b) a given commodity l ′ ∈L \ {0},
(c) a given state s′ ∈S .

Perturb ω0 by adding [−p̂l ′(s′)] to the coordinate that corresponds to commodity 0 in state s′,
and by adding [+1] to the coordinate that corresponds to commodity l ′ in state s′. The induced
change in agent 0’s income for the spot market in state s′ is

1 · [−p̂l ′(s′)]+ p̂l ′(s′) · [+1] = 0,
where the first element of these products reflects prices and the second stands for quantities.
Hence, by construction of the perturbation, individual 0’s optimal choice is unaltered, and so
is aggregate demand. However, ẑ is additively changed by an amount indicated by a vector of
dimension L(S+1) that contains −1 in the coordinate that corresponds to good l ′ in state s′, and
zero in the other coordinates.

Consider now the following choices:
(a) agent 0 ∈H ,
(b) a given asset a′ ∈A .

Perturb ω0 by adding [ra′(s)− q̂a′ · r0(s)] to the coordinates that correspond to commodity
0 in every state s ∈ S . Now we need to compensate the induced change in agent 0’s income
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to maintain unaltered the equilibrium prices. This can be done by adding [+q̂a′] to agent 0’s
holding of asset 0, and by adding [−1] to his holding of asset a′. So the change in income in s is

1 · [ra′(s)− q̂a′ · r0(s)]+1 · [r0(s) · q̂a′ − ra′(s) ·1] = 0.
Since

∑
a∈A ra(s) ·θ0

a ≤ 0, the perturbed asset holding continues to be budget feasible. It follows
that individual 0’s optimal choice is unaltered.

At the prices (p̂ ′, q̂ ′), the perturbation alters ẑ by the addition of a vector of dimension
L(S +1) that contains −1 in the coordinate that corresponds to good l ′ in state s′, and zero in
the other coordinates, and Θ̂ by the addition of a vector that contains −1 in the coordinate that
corresponds to asset a′ and zero in the others. Hence, the matrix D(ω,p̂,q̂)(ẑ,Θ̂)u , evaluated at a
vector (ω′, p̂ ′, q̂ ′) ∈ (ẑ,Θ̂)−1

u (0), has full row rank.
Now, by applying a transversality argument, we know that there exists a generic set ρ(u) ⊂Ω

such that D(p̂,q̂)(ẑ,Θ̂)ω,u has full row rank when evaluated at prices
(p̂ ′, q̂ ′) ∈ (ẑ,Θ̂)−1

ω,u(0), where ω ∈ ρ(u) and (ẑ,Θ̂)−1
ω,u(0) is the graph of the associated equilibrium

correspondence.
The result follows by applying the Implicit Function Theorem. 2

Notice that the parameters perturbed up to now are those reflected by the vector ω0
0, and the

number ω0
l ′(s′) for every l ′ ∈L \ {0} and for every s′ ∈S .

We specify the notation for the generic set of economies identified in Proposition 1 as Γ1 :={
(u,ω) ∈ Γ ∣∣ u ∈U ,ω ∈ ρ(u)

}
.

Since, by Proposition 1, equilibria are isolated, utility functions can be perturbed by the
addition of a quadratic term in a way such that the linear term subsequently added to the vector
of the first derivatives amounts to zero at the equilibrium allocation. Therefore, the perturbation
leaves unaffected demand but it changes the matrix of second derivatives of the utility function.
Using this fact, it can be shown that any perturbation of the matrix D p̂ ẑh , h ∈H , by the addition
of a symmetric matrix, can be induced by adding a suitably chosen quadratic term to the utility
function of the agent.3 This result will be used in the next proposition.

Proposition 2 (Generic Strong Regularity). Given Assumption A: (i), (iia), (iib), given a
feasible asset allocation, θ ∈R(A+1)(H+1), and the corresponding vector of equilibrium commod-
ity prices, p̂ ∈ RL(S+1)

+ , the matrix D p̂ ẑ is invertible when evaluated at p̂, for a generic set of
economies Γ2 ⊂ Γ1.

Proof. Consider the non-numeraire aggregate excess demand function
(ẑ,Θ̂) : Γ×P ×Q →RL(S+1) ×RA.

Denote the non-numeraire excess demand for commodities of individual h ∈H at the portfolio
and prices (θh , p̂) ∈ RA+1 ×RL(S+1)

+ by ẑh(θh , p̂) := (x̂h − ω̂h), where x̂h solves individual h’s
decision problem given (θh , p̂). Also, denote by ẑ(θ, p̂) := ∑

h∈H ẑh(θh , p̂) the corresponding
non-numeraire aggregate excess demand.

Define the function
3See, for example, Geanakoplos and Polemarchakis (1980).
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G : Γ×P ×Q ×∆L(S+1)−1 →RL(S+1) ×RA ×RL(S+1),

where ∆L(S+1)−1 is the simplex of dimension L(S +1)−1, and G is specified as
G(ω,u, p̂, q̂ ,δ) :=

[
(ẑ,Θ̂)(ω,u, p̂, q̂),δT ·D p̂ ẑ(θ, p̂)

]
.

Consider an array (ω,u, p̂, q̂) ∈ (ẑ,Θ̂)−1(0), and such that p̂ satisfies ẑ(θ, p̂) = 0. By using
the result obtained in Proposition 1, and by applying a transversality argument, we know that
(ẑ,Θ̂)ω,u is generically transverse to zero. Now, given a set of matrices that admit symmetric
perturbations, we can extract a generic subset all of whose elements are invertible matrices.
This, together with the fact noted above that, for any individual h ∈H , it is possible to perturb
D2uh , maintaining Duh at its original value, and changing D p̂ ẑh by the addition of a symmetric
matrix, leads to the result that Gω,u is generically transverse to zero. By applying the Regular
Value Theorem, we know that G−1

ω,u(0) = ; for a generic set of economies Γ2 ⊂ Γ1, since the
dimension of the domain of Gω,u is less than the dimension of the range. Hence, there does not
exist any δ ∈∆L(S+1)−1 such that δT ·D p̂ ẑ = 0T , and, consequently, D p̂ ẑ is generically invertible
when evaluated at p̂. 2

The parameters altered to obtain the regularity results above consist of ω0
0, ω0

l ′(s′) for every
l ′ ∈L \ {0} and for every s′ ∈S , and uh for some h ∈H .

Let us now introduce a “central planner”, who reallocates the existing assets among the
individuals before trade takes place. After that intervention, agents are allowed to trade in the
markets for goods to the point where a new equilibrium in the commodity markets is reached.
However, they are not allowed to retrade the asset portfolio they were assigned. We wish to
show that, for at least a generic set of economies, there exists an asset reallocation such that the
induced allocation of commodities is Pareto improving.

The asset redistribution directly affects the agents’ income and, given that more than a sin-
gle good is traded, also affects relative commodity prices in the spot markets at the next date.
Both types of effects change the individuals’ budget sets and therefore their consumption pos-
sibilities. However, intuitively we can see that the direct effect of any feasible asset reallocation
on the individuals’ income does not permit a Pareto improvement since only a redistribution
of a fixed amount of income takes place among the agents. Therefore, the key to analysing the
final effects on welfare rests in proposing a reallocation of asset holdings such that, taking into
account the induced price effect, the “new” equilibrium allocation, which will be induced by
the “new” asset holdings, is a constrained Pareto improvement.

We proceed by explicitly setting up the optimization problem of an agent h ∈H :

max{xh ,θh}uh(xh)

subject to:
∑

a∈A

q̂a ·θh
a ≤ 0∑

l∈L

p̂l (s) · [xh
l (s)−ωh

l (s)] ≤ ∑
a∈A

ra(s) ·θh
a for all s ∈S .

Those budget constraints hold with equality at the solution, given Assumption A: (i). The first

8



order conditions for an interior optimal choice are:

q̂a ·µh = ∑
s∈S

ra(s) ·λh(s) for all a ∈A , and

∂uh(xh)

∂xh
l (s)

=λh(s) · p̂l (s) for all l ∈L , s ∈S ,

where µh , λh(s) are, respectively, the Lagrange multipliers for individual h’s budget constraints
on assets and for the spot market in state s.

Consider the change induced by perturbing individual h’s asset holding on his consumption
plan, where we allow prices to change. From the first order conditions, and noting that duh =[
Dxh uh

]T ·d xh , the change in utility of agent h at the margin due to a marginal change in his
consumption plan is

duh = ∑
s∈S

λh(s) · ∑
l∈L

p̂l (s) ·d xh
l (s). (1)

Now we can consider the changes induced by such an asset perturbation on the individuals’
consumption plans. By totally differentiating individual h’s spot market budget constraint, we
obtain∑

l∈L

d p̂l (s) · [xh
l (s)−ωh

l (s)]+ ∑
l∈L

p̂l (s) ·d xh
l (s)− ∑

a∈A

ra(s) ·dθh
a = 0,

for each s ∈ S , a condition that must be satisfied by the induced changes at any equilibrium.
Equivalently,∑

l∈L

p̂l (s) ·d xh
l (s) = ∑

a∈A

ra(s) ·dθh
a − ∑

l∈L

d p̂l (s) · [xh
l (s)−ωh

l (s)]

= ∑
a∈A

ra(s) ·dθh
a − ∑

l∈L \{0}

d p̂l (s) · ẑh
l (s),

(2)

where we use the fact that the price of the numeraire commodity does not change, and where
ẑh

l (s) := [xh
l (s)−ωh

l (s)], for all l ∈L \ {0}.
By combining equations (1) and (2), we obtain:

duh = ∑
s∈S

λh(s) ·
[ ∑

a∈A

ra(s) ·dθh
a − ∑

l∈L \{0}

d p̂l (s) · ẑh
l (s)

]
, (3)

where the first element in brackets reflects the direct effect of the asset reallocation on individual
h’s utility through a perturbation of the agent’s income, and the second reflects the contribution
due to the change in relative prices. We turn now to a more detailed analysis of this price effect.

Let us recall that, after the reallocation of assets takes place, the markets for goods open
again and they clear at some “new” equilibrium prices. Considering the non-numeraire aggre-
gate excess demand as a function of the commodity prices and the asset allocation, we see that,
at the original equilibrium, ẑ(θ, p̂) = 0, and that, by totally differentiating this system of equa-
tions, D p̂ ẑd p̂ +Dθ ẑdθ = 0. By invoking the Strong Regularity result, Proposition 2, we know
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that, for economies in the generic set Γ2, D p̂ ẑ is invertible when evaluated at an equilibrium
price vector. So, we can apply the Implicit Function Theorem to say that

d p̂ =−(D p̂ ẑ)−1 ·Dθ ẑ ·dθ (4)

holds in a neighbourhood of the original equilibrium. Our problem has been reduced to specify-
ing an asset perturbation such that an improvement can be induced, where the change in utility
of agent h is given by (3), and the change in prices is determined by the matrix Dθ ẑ, of dimen-
sion L(S +1)× (H +1)(A+1), that appears in equation (4). We turn to a detailed analysis of that
matrix.

Consider an asset reallocation in which individual 0 makes a gift of asset 0 to all agents
h ∈H \ {0} and gifts asset 1 to agent 1.4

The set of perturbations that we consider is
{

d̃θ1
0, · · · , �dθH

0 , d̃θ1
1

}
, where �dθh′

a′ denotes the
gift of asset a′ ∈ {0,1} obtained by agent h′ ∈ H \ {0} from individual 0. Notice that the overall
feasibility requirements allow us to express the variation which takes place in individual 0’s
asset holdings by d̃θ0

0 = −∑
h′∈H \{0}

�dθh′
0 , and d̃θ0

1 = −d̃θ1
1. From the proposed set of asset

reallocations we specify the vector

d̃θ :=



d̃θ1
0

d̃θ1
1

d̃θ2
0

...�dθH
0

 ,

of dimension H+1, which reflects the “central planner’s” intervention. Notice that the feasibility
of the proposed policy is maintained when altering independently any coordinate of the vector
above. Therefore, H +1 independent instruments are available to the planner by construction;
as will be explained, that number is sufficient to generate the “required” changes in the H +1

agents’ budget sets leading to a Pareto improvement of the allocation at the “new” equilibrium,
for a generic set of economies.

Let us step back for a moment and consider a general reallocation of assets. In general,
dθh ∈RA+1 for every h ∈H , and

dθ =


dθ0

dθ1

...
dθH

 ∈R(H+1)(A+1)

denotes an asset reallocation; feasibility of the reallocation needs to be imposed separately.
The specific perturbation that interests us, which we now specify, will be denoted by ďθ :=

4GP consider a transfer of asset 1 from agent 0 to all agents h ∈H \ {0}, and of asset 0 from individual 0 to 1.
Clearly, this variation with respect to what GP propose is of no material consequence.
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( ˇdθh)h∈H ∈R(H+1)(A+1), and is obtained as

ˇdθ0 :=


−∑

h′∈H \{0}
�dθh′

0

−d̃θ1
1

0
...
0

, ˇdθ1 :=


d̃θ1

0

d̃θ1
1

0
...
0

, and ˇdθh :=


d̃θh

0
0
0
...
0


for every h ∈H \ {0,1}.

Evidently, even though ďθ and d̃θ are vectors of different dimension, they identify the
same economic object; however, ďθ contains zeros in all the coordinates except in those cor-
responding to the change of asset 1 for individuals 0 and 1, and of asset 0 for all individuals.
Consequently, even though the matrix Dθ ẑ has dimension
L(S + 1)× (H + 1)(A + 1), since we are interested in the effect of the specific reallocation on
demand, the reader should have in mind that it suffices to consider a submatrix, denoted by
D θ̃ ẑ, of dimension L(S + 1)× (H + 1). The matrix D θ̃ ẑ consists of those entries of the matrix
Dθ ẑ which are relevant in the sense that the reallocation ďθ has non-zero entry. From here
on, the formalities will be conducted in terms of Dθ ẑ and ďθ, but the intuition for the specific
intervention will be explained in terms of the notation D θ̃ ẑ and d̃θ.

Let us consider in more detail the income effects generated by the asset intervention. By
assuming that uh has an additively separable representation, we know that a variation of agent
h’s income in state s only affects his consumption in that state, so that cross influences among
states are avoided when working with income effects, a fact that permits us to use for further
arguments the notation that we now introduce. For h ∈H , the number V h

l (s) denotes the change
of individual h’s demand of good l as a consequence of an infinitesimal perturbation of his
income in state s. Set the vectors V h(s) := (

V h
l (s)

)
l∈L \{0} and V h := (

V h(s)
)

s∈S , and, for a ∈A ,
define the vector, of dimension L(S +1),

V h ¯ ra :=


ra(0) ·V h(0)
ra(1) ·V h(1)

...
ra(S) ·V h(S)

 .

For the proposed policy, by considering the vectors defined above, we can express the changes
in the excess demand of the individuals as:

(a) Dθ ẑ1 · ďθ = (V 1 ¯ r0) · d̃θ1
0 + (V 1 ¯ r1) · d̃θ1

1,

(b) Dθ ẑh′ · ďθ = (V h′ ¯ r0) ·�dθh′
0 for every h′ ∈H \ {0,1},

(c) Dθ ẑ0 · ďθ =−∑
h∈H \{0}(V

0 ¯ r0) · d̃θh
0 − (V 0 ¯ r1) · d̃θ1

1.

Since d ẑh = Dθ ẑh · ďθ, for every h ∈H , d ẑ = Dθ ẑ · ďθ, and d ẑ =∑
h∈H d ẑh , we see that

Dθ ẑ · ďθ = ∑
h∈H \{0}

(V h −V 0)¯ r0 · d̃θh
0 + (V 1 −V 0)¯ r1 · d̃θ1

1. (5)

11



Given a vector of utilities u ∈ U , we are interested in obtaining a precise specification of
the matrix of derivatives Dθu, for the policy proposed above. Consider a vector of utilities
u = (uh)h∈H ∈U . By using equation (3), we know that

du =


∑

s∈S λ0(s) ·∑a∈A ra(s) · ˇdθ0
a∑

s∈S λ1(s) ·∑a∈A ra(s) · ˇdθ1
a

...∑
s∈S λH (s) ·∑a∈A ra(s) · ˇdθH

a

+


−∑

s∈S λ0(s) ·∑l∈L \{0} d p̂l (s) · ẑ0
l (s)

−∑
s∈S λ1(s) ·∑l∈L \{0} d p̂l (s) · ẑ1

l (s)
...

−∑
s∈S λH (s) ·∑l∈L \{0} d p̂l (s) · ẑH

l (s)

 .

Equivalently,

du =


∑

s∈S λ0(s) ·∑a∈A ra(s) · ˇdθ0
a∑

s∈S λ1(s) ·∑a∈A ra(s) · ˇdθ1
a

...∑
s∈S λH (s) ·∑a∈A ra(s) · ˇdθH

a

+


−∑

s∈S

∑
l∈L \{0}λ

0(s) · ẑ0
l (s) ·d p̂l (s)

−∑
s∈S

∑
l∈L \{0}λ

1(s) · ẑ1
l (s) ·d p̂l (s)

...
−∑

s∈S

∑
l∈L \{0}λ

H (s) · ẑH
l (s) ·d p̂l (s)

 .

(6)

We now introduce some extra notation to express (6) in the form du = (T +C ) · d̃θ, where T

and C are two matrices of dimension (H +1)×(H +1). Let us define, for h ∈H , the row vector,
of dimension L(S +1),

λh ¯ ẑh :=
(
λh(0) ·

[
ẑh(0)

]T
λh(1) ·

[
ẑh(1)

]T · · · λh(S) ·
[

ẑh(S)
]T )

.

Define also the matrix, of dimension (H +1)×L(S +1),

( �λ¯ ẑ) :=


λ0 ¯ ẑ0

λ1 ¯ ẑ1

...
λh ¯ ẑH

 .

We can write, for every h ∈H ,∑
s∈S

∑
l∈L \{0}

λh(s) · ẑh
l (s) ·d p̂l (s) = (λh ¯ ẑh) ·d p̂,

and, hence, the second vector in equation (6) can be expressed as −( �λ¯ ẑ) ·d p̂.
Now, by considering

d p̂ =−(D p̂ ẑ)−1 ·Dθ ẑ · ďθ,

obtained earlier, and by using equation (5), we know that

−( �λ¯ ẑ) ·d p̂ = ( �λ¯ ẑ) · (D p̂ ẑ)−1Dθ ẑ · ďθ

= ( �λ¯ ẑ) · (D p̂ ẑ)−1 ·
( ∑

h∈H \{0}

(V h −V 0)¯ r0 · d̃θh
0 + (V 1 −V 0)¯ r1 · d̃θ1

1

)
= ( �λ¯ ẑ) · (D p̂ ẑ)−1 · [(V 1 −V 0)¯ r0 · · · (V H −V 0)¯ r0 (V 1 −V 0)¯ r1

] · d̃θ.
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We remark that the matrix[
(V 1 −V 0)¯ r0 · · · (V H −V 0)¯ r0 (V 1 −V 0)¯ r1

]
that appears in the expression above has dimension L(S +1)× (H +1).

Set the following matrices, of dimension (H +1)× (H +1),

C := ( �λ¯ ẑ) · (D p̂ ẑ)−1 · [(V 1 −V 0)¯ r0 · · · (V H −V 0)¯ r0 (V 1 −V 0)¯ r1
]

,

and the matrix T that satisfies

T · d̃θ =


∑

s∈S λ0(s) ·∑a∈A ra(s) · ˇdθ0
a∑

s∈S λ1(s) ·∑a∈A ra(s) · ˇdθ1
a

...∑
s∈S λH (s) ·∑a∈A ra(s) · ˇdθH

a

 .

Then, from equation (6), we see that du is in fact obtained by considering the sum of these
two matrices multiplied by the vector d̃θ, i.e., du = (T +C ) · d̃θ.

Notice that if the matrix T +C has rank H +1 then it is possible to choose a perturbation
d̃θ such that the utility vector changes by the addition of an arbitrary vector; in particular, an
improvement can be induced. A standard argument shows that the matrix T cannot have rank
H+1, since it only captures the effect of a pure redistribution of income. It follows that, to prove
Theorem T, it suffices to show that the matrix C specified above has rank H +1 for a generic set
of economies.

Before we proceed to the details spelled out in the sections to follow, we describe briefly
the different arguments that will be used to complete the proof. Our objective is to show that,
generically, there is no δ ∈∆H such that δT ·C = 0T . To do that, on the one hand, in Section 4.2,
we show that, generically, the matrix obtained by eliminating the vectors of the matrix[

(V 1 −V 0)¯ r0 · · · (V H −V 0)¯ r0 (V 1 −V 0)¯ r1
]

that correspond to some dropped state, has rank H +1. On the other hand, we show that, given
δ ∈ ∆H , by suitably perturbing utilities and endowments, we can alter as we wish the entries
of the vector δT · ( �λ¯ ẑ) · (D p̂ ẑ)−1 that correspond to at least S states, and yet leave (D p̂ ẑ)−1

unaffected. To do so we use a result from linear algebra given in Section 6, together with (i) a
result on linear independence given in Subsection 4.1, and (ii) Property 2 in Section 5 whereby
there exists a set of L +1 individuals {h0,h1, · · · ,hL} ⊂ H , such that, given δ = (δh)h∈H ∈ ∆H ,
generically, 0 6= δh0 ·λh0 (s) 6= δhi ·λhi (s) for at least S states, for every i ∈ {1,2, · · · ,L}.

4. Results on Linear Independence

In this section we obtain two properties of linear independence that the set of vectors{
V 0,V 1, · · · ,V H

}
generically satisfies. These results require that L > 0 and that preferences not

be quasi-linear since otherwise income effects are absent.

4.1. The Spanning Property

The property obtained in this subsection can be stated as follows.
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Proposition 3. Given Assumption A, for any subset of L +1 individuals, {h0,h1, · · · ,hL} ⊂ H ,
and for any s ∈ S , the set of vectors

{
V h1 (s)−V h0 (s),V h2 (s)−V h0 (s), · · · ,V hL (s)−V h0 (s)

}
is

linearly independent, for a generic set of economies Γ3 ⊂ Γ.

Proof. Consider a subset of L+1 individuals arbitrarily drawn from H ,
{h0,h1, · · · ,hL} ⊂H , and a state s ∈S .

Define the matrix, of dimension L×L,

Π(s) :=
[

V h1 (s)−V h0 (s) V h2 (s)−V h0 (s) · · · V hL (s)−V h0 (s)
]

.

Also, define the function

Υ(s) : Γ×P ×Q ×∆L−1 →RL(S+1) ×RA ×RL,

where ∆L−1 is the simplex of dimension L−1, and Υ(s) is specified as

Υ(s)(ω,u, p̂, q̂ ,δ) :=
[

(ẑ,Θ̂)(ω,u, p̂, q̂),δT ·Π(s)
]

.

Since utility functions can be perturbed without changing their first derivatives at the equi-
librium allocation, we are able to change V h(s) for any h ∈H and for any s ∈S , maintaining
(ẑ,Θ̂) unaltered at the equilibrium prices. Therefore, by applying a transversality argument, we
know that Υ(s)(ω,u) is transverse to zero for every (ω,u) ∈ Γ3, where Γ3 ⊂ Γ is a generic set.
Now, given that the dimension of the range of Υ(s)(ω,u) exceeds that of the domain, by applying
the Regular Value Theorem, Υ(s)−1

(ω,u)(0) = ; for all (ω,u) ∈ Γ3, and, hence, we can conclude
that Π(s) has rank L for a generic set of economies Γ3.

The result follows by noting that s was chosen arbitrarily. 2

Notice that if this property holds then, for any given s ∈S , the set of vectors{
V h1 (s)−V h0 (s),V h2 (s)−V h0 (s), · · · ,V hL (s)−V h0 (s)

}
spans RL.

4.2. The Changes Induced in the Agents’ Demands
The property that we obtain in this subsection is stated as follows.

Proposition 4. Given Assumption A, the set of vectors{
(V 1 −V 0)¯ r0, · · · , (V H −V 0)¯ r0, (V 1 −V 0)¯ r1

}
is linearly independent even when consider-

ing any LS coordinates of such vectors, for a generic set of economies Γ4 ⊂ Γ.

Proof. Pick a state s ∈S and construct the set of vectors{
(V 1 −V 0)¯ r0

s
, · · · , (V H −V 0)¯ r0

s
, (V 1 −V 0)¯ r1

s}
by dropping the L coordinates that correspond to state s from the vectors of the set{

(V 1 −V 0)¯ r0, · · · , (V H −V 0)¯ r0, (V 1 −V 0)¯ r1
}

.
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We proceed with the proof by decomposing it into two parts.

Step 1: From Assumption A: (iii) we know that the rank of every matrix of size
(A+1)×(A+1) obtained by removing from matrix R any set of S−A rows equals A+1. In other
words, any set of vectors obtained by considering, for each of the assets in A , the same A +1

coordinates of their corresponding vectors of payoffs is linearly independent. Since A +1 ≥ 2

we can choose two vectors from the set {r0,r1, · · · ,r A} such that they are linearly independent
when restricted to any subset, of size A +1, of their coordinates. Furthermore, since S ≥ A +1

we know that these two vectors are also linearly independent when restricted to S arbitrarily
chosen coordinates. This result guarantees, in addition, that not all the coordinates of any of the
vectors derived in that way equal zero.5

Consider without loss of generality that r0,r1 ∈ RS+1 are the vectors chosen as described
above. It follows that the pair of vectors (V 1 −V 0)¯ r0

s
, (V 1 −V 0)¯ r1

s
are linearly indepen-

dent, given that, by multiplying (V 1 −V 0) by r0, and by r1, according to the product ¯, we can
see that the vectors r0 and r1 are affected by the same proportion in the same coordinates, and,
hence, no relative change accross the coordinates is induced.

Step 2: Define the matrix, of dimension LS × (H +1),

Σs :=
[

(V 1 −V 0)¯ r0
s · · · (V H −V 0)¯ r0

s
(V 1 −V 0)¯ r1

s]
,

and the function

Φs : Γ×P ×Q ×∆H →RL(S+1) ×RA ×RLS,

where

Φs(ω,u, p̂, q̂ ,δ) :=
[

(ẑ,Θ̂)(ω,u, p̂, q̂),Σs ·δ
]

.

Since we can perturb utility functions in a way such that (V h −V 0), h ∈ H \ {0}, and, con-
sequently, also (V h −V 0)¯ r0

s
, h ∈H \{0}, and (V 1 −V 0)¯ r1

s
are changed, maintaining (ẑ,Θ̂)

unaffected, we know that Φs is transverse to zero. Since the dimension of the range of Φs
ω,u

exceeds that of the domain, we know that, for all (ω,u) ∈ Γ4, where Γ4 ⊂ Γ is a generic set, there
is no δ ∈∆H such that Σs ·δ= 0, and, hence, rank[Σs] = H +1.

The result yields since state s was chosen arbitrarily. 2

Notice that, since we are considering a set of H + 1 vectors, and the linear independence
property is stated for at least LS of the coordinates, then H + 1 ≤ LS appears as a necessary
condition for this result to hold. By assuming that H < LS, such a condition is satisfied.

We remark that Citanna, Kajii and Villanacci (1998) do not impose an upper bound on the
number of agents. They can achieve the constrained suboptimality result since they consider

5In their proof, GP claim that by using Assumption A: (iii) and (possibly) by relabelling assets, one obtains
that r0(s) 6= 0 for all s ∈S . However, easy examples can show that that implication fails to hold. Nevertheless, the
proof does not make use of that result stated by GP.
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a policy where lump-sum transfers take place for some goods among individuals in the first
period. This allows them to control directly the individuals’ income effects. They analyze the
same problem as GP but from a different perspective since they propose a distinct policy.

5. Marginal Utility of Income

In this section we obtain two properties of the individuals’ marginal utilities of income. The
first of them shows that, generically, the agents’ ratios of marginal utilities across states do not
coincide, a fact that is strictly derived from the incompleteness of markets. This fact also drives
the result stated in the second property.

Property 1: For a generic set of economies Γ5 ⊂ Γ, at each CE, λh (s)
λh (s′) 6=

λh′ (s)
λh′ (s′)

for every h,h′ ∈
H , h 6= h′, and for every s, s′ ∈S , s 6= s′.

Proof. Define the set MR := {
m ∈RS+1

∣∣ RT ·m = 0
}
. Since, by Assumption A: (iia) and (iic),

rank(R) = A+1 and S+1 > A+1, we know that MR is generated by a vector space of dimension
greater than or equal to one. For an arbitrary s̃ ∈S , consider a subset of A+1 states Ŝ ⊂S \{s̃},
ordered as s0, s1, · · · , sA, set m̂s = 0 for every s ∉ Ŝ such that s 6= s̃, and let m̂ s̃ 6= 0 be an arbitrary
number. The equation −m̂ s̃ · r (s̃) = ∑

s∈Ŝ m̂s · r (s) has a solution since, by Assumption A: (iii),
every set of A + 1 vectors that can be extracted from the set {r (0),r (1), · · · ,r (S)} is linearly
independent so they span RA+1. It follows that it is possible to pick a vector m̂ ∈ MR \

{
0
}

even
though at least one coordinate is arbitrarily prespecified.

Fix an equilibrium allocation of a given economy (ω,u) ∈ Γ, and consider, for an individual
h ∈ H , the Lagrange multipliers λh(s), s ∈ S , at the chosen equilibrium. Define the S + 1

dimensional vector λh := (λh(s))s∈S . Notice that µh ·q̂ = RT ·λh specifies the condition obtained
earlier for the optimal choice of an asset portfolio by individual h.

Consider two given individuals, h,h′ ∈H , h 6= h′, and two given states s, s′ ∈S , s 6= s′.
Perturb individual h’s utility in a way such that a quantity denoted by τl (s) is added to each

derivative ∂uh(xh)
/
∂xh

l (s) at the equilibrium, and, consequently, the vector λh is perturbed by
the addition of a vector dλh . Using the conditions for agent h’s optimal choice of goods, we
know that, for a given state s ∈ S , and for every l ∈ L , the quantities τl (s) and dλh(s) satisfy
τl (s) = p̂l (s) ·dλh(s), given the equilibrium price p̂l (s), and dλh := (dλh(s))s∈S . The “new”
vector of multipliers induced by the perturbation is λh +dλh .

By the properties of the set MR , it is possible to choose a dλh ∈ MR such that
(

dλh(s)
dλh(s′)

)
6= 0.

This allows us to construct the utility perturbation described above. That perturbation does not
affect the optimal choice of assets of individual h, given that

RT · (λh +dλh) = RT ·λh +RT ·dλh = RT ·λh +0 = RT ·λh .

In addition, we need to compensate the change induced in agent h’s demand. This can be
done by adding the appropriate amount to his vector of endowments ωh so as to leave his excess
demand unaffected.
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Now define the matrix, of dimension 2×2,

Q :=
[
λh(s) λh′

(s)
λh(s′) λh′

(s′)

]
,

and the function:

ϕ :Ω×U ×P ×Q ×∆1 →RL(S+1) ×RA ×R2,

where ∆1 is the one dimension simplex, and ϕ is specified as

ϕ(ω,u, p̂, q̂ ,δ) := [(ẑ,Θ̂)(ω,u, p̂, q̂),δT ·Q].

Since the perturbation of utilities and endowments specified above changes the vector(
λh(s),λh(s′)

)T leaving (ẑ,Θ̂) unaffected, it can be used to show that ϕ is transverse to zero.
Since the dimension of the range of ϕω,u exceeds that of the domain, by applying the Regular
Value Theorem, we know that ϕ−1

ω,u(0) =; for every (ω,u) ∈ Γ5, where Γ5 ⊂ Γ is a generic set.
Hence, for such a set of economies, there does not exist any δ ∈∆1 such that δT ·Q = 0T , that is,
the rank of the matrix Q is 2, and the result is obtained. 2

Property 2: Given Property 1, given δ := (δh0 ,δh1 , · · · ,δhL ) ∈∆L such that δh0 6= 0, there exists
a set of L+1 individuals, {h0,h1, · · · ,hL} ⊂H , such that
0 6= δh0 ·λh0 (s) 6= δhi ·λhi (s) for at least S states, for every i ∈ {1,2, · · · ,L}, for all (ω,u) ∈ Γ5.

Proof. Notice that, since we obtain only interior solutions, λh(s) 6= 0 for all h ∈H , and for all
s ∈S at a CE.

Consider an individual h0 ∈ H , a subset of states S̃ ⊂ S such that #S̃ := S, and pick a
δ := (δh0 ,δh1 , · · · ,δhL ) ∈∆L such that δh0 6= 0. By assuming that H ≥ 2L, we are able to either:

(i) extract from H \ {h0} a set of individuals {h1,h2, · · · ,hL} ⊂H \ {h0} for which
δhi ·λhi (s) 6= δh0 ·λh0 (s) for every i ∈ {1,2, · · · ,L}, for every s ∈ S̃ , and, hence, Property 2 holds,
or

(ii) extract from H \ {h0} a set of individuals
{
h′

1,h′
2, · · · ,h′

L

}⊂H \ {h0} such that
δh′

i
·λh′

i (s) = δh0 ·λh0 (s), for every i ∈ {1,2, · · · ,L}, for some s ∈ S̃ . Then, by using the result

stated in Property 1, we know that λh′
i (s)

/
λh′

i (s) 6= λh0 (s)
/
λh0 (s) for every i ∈ {1,2, · · · ,L}, for

every s ∈S \
{

s
}
, for every (ω,u) ∈ Γ5. Therefore, by specifying the set S̆ :=S \

{
s
}
, we obtain

that δhi ·λhi (s) 6= δh0 ·λh0 (s) for every i ∈ {1,2, · · · ,L}, for every s ∈ S̆ , for all (ω,u) ∈ Γ5, as
required. 2

6. A Useful Result from Linear Algebra

This section presents a technical result from linear algebra that is used in the proof.
Consider a set of linearly independent vectors of dimension L, V = {v1, · · · , vL}, an arbitrary

set of L numbers, {α1,α2, · · · ,αL}, and specify a set of vectors
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E := {e1,e2, · · · ,eL}, of dimension L, by setting ei :=αi · vi for every i ∈ {1,2, · · · ,L}.
Define the vector

α :=


α1

α2
...
αL

 ,

of dimension L, and the matrix, of dimension L×L, φ := [v1 v2 · · · vL].
Let the vector e be specified as e :=∑L

i=1 ei . Since V spans RL and∑L
i=1 ei =∑L

i=1αi ·υi =φ ·α,

we know that any vector e ∈RL can be generated by suitably choosing the vector α.
Now consider a set of non zero numbers {a0, a1, · · · , aL} such that a0 6= ai for all i ∈ {1,2, · · · ,L},

and define the matrix, of dimension L×L,

A :=


a1 0 · · · 0
0 a2 · · · 0
...

...
...

0 0 · · · aL

 .

Given that A is diagonal, the set of its eigenvalues coincides with that of the matrix φ · A ·φ−1.
Since a0 6= ai for all i ∈ {1,2, · · · ,L}, it follows that a0 is not an eigenvalue of A, and that it is not
an eigenvalue of φ · A ·φ−1 either. Hence, | a0 · I −φ · A ·φ−1 |6= 0, where I is the identity matrix
of dimension L×L. So, the matrix (a0 · I −φ · A ·φ−1) has full rank.

Notice that the vector (a0 · I −φ · A ·φ−1) ·e can be rewritten as

(a0 · I −φ · A ·φ−1) · (φ ·α) = a0 ·e −φ · A ·α= a0 ·
L∑

i=1
αi ·υi −

L∑
i=1

ai ·αi ·υi .

Thus, we have shown

Lemma 1 (L). Given a set of L non zero numbers {a0, a1, · · · , aL} such that a0 6= ai for all
i ∈ {1,2, · · · ,L}, and a set of L linearly independent vectors of dimension L, {v1, · · · , vL}, any
vector a0 ·∑L

i=1αi ·υi −∑L
i=1 ai ·αi ·υi , of dimension L, can be generated by suitably choosing

the set of numbers {α1,α2, · · · ,αL}.

7. Proof of the Result

In this section we provide the proof of Theorem T by making use of the various arguments
presented up to now.

Let us specify the generic set of economies that are strongly regular, Proposition 2, and for
which, at any CE, the “spanning property”, the property stated in Subsection 4.2, and Property
2 are satisfied, as Γ̂ :=∩5

k=2Γk .
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Consider a CE, with equilibrium prices (p̂, q̂), of a given economy (ω,u) ∈ Γ̂. Let us recall
that the key procedure to prove Theorem T is to show that the matrix C defined in Section 3 has
full rank for a generic set of economies. Since we are interested in proving a generic feature, we
need to perturb the economy (ω,u). We do this by setting an additive perturbation that induces
(ω,u) to move to a neighbouring economy, that is,

(ω,u) 7−→ (ω,u)+ (∆ω,∆u),
where ∆ω and ∆u denote, respectively, the perturbation to endowments and the perturbation to
utilities.

Let us describe first the perturbation to endowments.
Consider a set of L + 1 individuals {h0,h1, · · · ,hL} ⊂ H and a subset of states S̃ ⊂ S ,

#S̃ = S, ordered as s1, · · · , sS . Set
{

s
}

:= S /S̃ . For the moment both the sets, that of in-
dividuals and of states, are arbitrary. Consider, for every s ∈ S̃ , an arbitrary set of numbers{
γ1(s),γ2(s), · · · ,γL(s)

}
. Let the vector ∆ω be specified as:

(a) ∆ωh := 0 for every h ∉ {h0,h1, · · · ,hL},

(b) for every i ∈ {1,2, · · · ,L},

∆ωhi (s) =


∆ω

hi
0 (s)

∆ω
hi
1 (s)
...

∆ω
hi
L (s)

 :=
(

∆ω
hi
0 (s)

γi (s) · [V hi (s)−V h0 (s)
] )

,

for every s ∈ S̃ , and ∆ωhi (s) := 0,

(c) ∆ωh0 (s) =


∆ω

h0
0 (s)

∆ω
h0
1 (s)
...

∆ω
h0
L (s)

 :=
(

∆ω
h0
0 (s)

−∑L
i=1γi (s) · [V hi (s)−V h0 (s)

] )

for every s ∈ S̃ , and ∆ωh0 (s) := 0.

In addition, ∆ωhi
0 , i ∈ {1,2, · · · ,L}, and ∆ωh0

0 are specified as to satisfy the constraints:

for every i ∈ {0,1,2, · · · ,L}, we have that ∆ωhi
0 (s)+∑

l∈L \{0} p̂l (s) ·∆ωhi
l (s) = 0 for every s ∈ S̃ ,

so that income remains unaffected.
Let us denote by ∆ẑh the change induced in individual h’s excess demand by the perturba-

tion of endowments. Also, denote the change induced in aggregate excess demand by ∆ẑ.
We know that the perturbation to endowments does not change the optimal choices of any

individual since it leaves unaffected the individuals’ budget contraints at every state. Also, it
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satisfies

(i) ∆ẑh = 0 for every h ∉ {h0,h1, · · · ,hL},

(ii) ∆ẑhi (s) = γi (s) · [V hi (s)−V h0 (s)
]

for every i ∈ {1,2, · · · ,L} and for every s ∈ S̃ ,

(iii) ∆ẑh0 (s) =−∑L
i=1γi (s) · [V hi (s)−V h0 (s)

]
for every s ∈ S̃ , and

(iv) ∆ẑhi (s) = 0 for every i ∈ {0,1,2, · · · ,L}.

For i ∈ {0,1,2, · · · ,L}, let ∆ẑhi = (
∆ẑhi (s)

)
s∈S , an L(S +1) dimensional column vector.

For an arbitrary vector δ := (δh)h∈H ∈ ∆H we analyze the change in δT · ( �λ¯ ẑ), a row
vector with L(S +1) components, of which the L components corresponding to the state s are
zero, induced by the specified perturbation to endowments. We obtain

δT · (âλ¯∆ẑ) = ∑
h∈H

δh · (λh ¯∆ẑh) = δh0 · (λh0 ¯∆ẑh0 )+
L∑

i=1
δhi · (λhi ¯∆ẑhi ),

since ∆ẑh = 0 for every h ∉ {h0,h1, · · · ,hL}. It follows that δh , h ∉ {h0,h1, · · · ,hL}, play no role
so, without loss of generality, we can consider δ ∈∆L. Upon substituting for ∆ẑhi we obtain

δT · (âλ¯∆ẑ) =−δh0 ·
(
λh0 (s1) ·

[∑L
i=1γi (s1) · [V hi (s1)−V h0 (s1)]

]T
· · ·

[
0
]T

· · ·

· · · λh0 (sS) ·
[∑L

i=1γi (sS) · [V hi (sS)−V h0 (sS)]
]T )

+∑L
i=1δhi ·

(
λhi (s1) ·γi (s1) ·

[
V hi (s1)−V h0 (s1)

]T
· · ·

[
0
]T

· · ·

· · · λh0 (sS) ·γi (sS) ·
[

V hi (sS)−V h0 (sS)
]T )

=
(
−δh0 ·λh0 (s1) ·

[∑L
i=1γi (s1) · [V hi (s1)−V h0 (s1)]

]T

+∑L
i=1δhi ·λhi (s1) ·γi (s1) ·

[
V hi (s1)−V h0 (s1)

]T

· · ·
[

0
]T

· · ·

−δh0 ·λh0 (sS) ·
[∑L

i=1γi (sS) · [V hi (sS)−V h0 (sS)]
]T

+∑L
i=1δhi ·λhi (sS) ·γi (sS) ·

[
V hi (sS)−V h0 (sS)

]T )
so that there are S +1 blocks of L dimensional row vectors of which one block, the one corre-
sponding to state s, is a vector of zeroes.

Let δ be such that δh′ > 0 for some h′ ∈H . Use Property 2 of Section 5 to specify a set of
L+1 individuals, denoted {h0,h1, · · · ,hL}, and a set of states S̃ , such that

0 6= δh0 ·λh0 (s) 6= δhi ·λhi (s)

for all s ∈ S̃ . Use the specified set of individuals and the set S̃ of states to construct the
endowment perturbation specified above with

{
γ1(s),γ2(s), · · · ,γL(s)

}
, s ∈ S̃ , being arbitrary
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numbers. For each s ∈ S̃ apply Lemma L with δhi ·λhi (s) playing the role of ai , i = 0,1, · · · ,L,
with

{
γ1(s),γ2(s), · · · ,γL(s)

}
playing the role of {α1,α2, · · · ,αL}, and with{

V h1 (s)−V h0 (s),V h2 (s)−V h0 (s), · · · ,V hL (s)−V h0 (s)
}

playing the role of {v1, · · · , vL}; the Lemma can be applied by invoking the spanning property
obtained in Subsection 4.1. It follows that any vector δT ·(âλ¯∆ẑ) with LS non zero coordinates
can be generated by suitably picking the set of numbers

{
γ1(s),γ2(s), · · · ,γL(s)

}
for every s ∈ S̃

since LS coordinates can be controlled independently.

The perturbation of endowments specified above also changes the matrix D p̂ ẑ which we
now analyze. Consider a given state s ∈ S̃ . Let us denote by ∆D p̂(s)ẑh(s), h ∈ H , and by
∆D p̂(s)ẑ(s), the changes induced, respectively, in the matrices D p̂(s)ẑh(s), h ∈H , and D p̂(s)ẑ(s),
by the perturbation of endowments. For an individual h ∈H , the Slutsky decomposition of the
matrix D p̂(s)ẑh(s) gives:6

D p̂(s)ẑh(s) =λh(s) ·K h(s)−V h(s) · [ẑh(s)]T ,

where K h(s) is a symmetric matrix of dimension L×L.
We remark that, for any h ∈H and for any s ∈S , λh(s), K h(s), and V h(s) are not affected by

the specified perturbation of endowments since income, and hence demand, remains unaffected.
Now, by making use of the induced changes to individuals excess demands, ∆ẑh(s), and the fact
that D p̂(s)ẑ(s) =∑

h∈H D p̂(s)ẑh(s) for every s ∈S , we obtain that

∆D p̂(s)ẑ(s) =−
L∑

i=0
V hi (s) ·

[
∆ẑhi (s)

]T

=−V h0 (s)
L∑

i=1
γi (s) ·

[
V hi (s)−V h0 (s)

]T
+

L∑
i=1

V hi (s) ·γi (s) ·
[

V hi (s)−V h0 (s)
]T

=
L∑

i=1
γi (s) ·

[
V hi (s)−V h0 (s)

]
·
[

V hi (s)−V h0 (s)
]T

.

To ease the notational burden, let us relabel each coordinate
[
V hi

l (s)−V h0
l (s)

]
as Ahi

l (s) for every
i ∈ {1,2, · · · ,L}, and for every l ∈L \{0}. By writing out the product above, we derive the matrix
of dimension L×L

∆D p̂(s)ẑ(s) =
∑L

i=1γi (s) · Ahi
1 (s) · Ahi

1 (s)
∑L

i=1γi (s) · Ahi
1 (s) · Ahi

2 (s) · · · ∑L
i=1γi (s) · Ahi

1 (s) · Ahi
L (s)∑L

i=1γi (s) · Ahi
2 (s) · Ahi

1 (s)
∑L

i=1γi (s) · Ahi
2 (s) · Ahi

2 (s) · · · ∑L
i=1γi (s) · Ahi

2 (s) · Ahi
L (s)

...
...

...∑L
i=1γi (s) · Ahi

L (s) · Ahi
1 (s)

∑L
i=1γi (s) · Ahi

L (s) · Ahi
2 (s) · · · ∑L

i=1γi (s) · Ahi
L (s) · Ahi

L (s)

 ,
(7)

which happens to be symmetric.

Let us now introduce the perturbation to utilities, ∆u. Consider an individual h̃ ∈ H , and
construct ∆u by placing a quadratic term, that we now describe, in the coordinate that corre-

6See, for instance, Geanakoplos and Polemarchakis (1980).
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sponds to individual h̃, and by placing zeroes in the other coordinates. This quadratic term is
such that the linear term subsequently added to the vectors of first derivatives of uh̃ amounts
to zero at the CE; hence, it leaves aggregate demand unaffected, but changes the matrix of sec-
ond derivatives of uh̃ .7 In addition, this quadratic term induces, for every s ∈ S , a change in
the matrix K h̃(s) by the addition of a symmetric matrix that cancels out with the matrix above,
equation (7).

We turn to analyze the effects of the perturbations (∆ω,∆u) on the vector δT ·C where δ is
chosen arbitrarily and the perturbation depends on δ. Denote by ∆C the change induced in the
matrix C. Since the specified perturbations do not change the matrix D p̂ ẑ, we obtain

δT ·∆C = δT · (âλ¯∆ẑ) · (D p̂ ẑ)−1 · [(V 1 −V 0)¯ r0 · · · (V H −V 0)¯ r0 (V 1 −V 0)¯ r1
]

.

Also, as noted earlier, we know that the vector δT · (âλ¯∆ẑ) can be generated as desired for at
least LS of the coordinates; hence, so can the vector (âλ¯∆ẑ) · (D p̂ ẑ)−1 given that we are able
to leave unaffected the matrix D p̂ ẑ. The property stated in Subsection 4.2 assures us that the
matrix obtained by eliminating those rows of the matrix[

(V 1 −V 0)¯ r0 · · · (V H −V 0)¯ r0 (V 1 −V 0)¯ r1

]
that correspond to some dropped state, has rank H + 1, and hence has at least H + 1 linearly
independent rows. It follows that, given δ, by specifying a perturbation that generates non zero
entries only in those components of δT · (âλ¯∆ẑ) · (D p̂ ẑ)−1 that correspond to some set of H +1

linearly independent rows, we can guarantee that δT ·∆C 6= 0T .
Consequently, by applying a transversality argument, we obtain that δT ·C 6= 0T for every

(ω,u) ∈ Γ̃, where Γ̃⊂ Γ̂ is a generic set.
Since δ was chosen arbitrarily, it follows that the matrix C has rank H +1 for a generic set

of economies Γ̃. This completes the proof of the Theorem T.

Remark 1. The GP result holds for a generic set of economies. Of course, there are non-generic
economies for which some CE are not CS. As in GP, consider an economy (ω,u) ∈ Γ for which
there is a CE such that no agent trades any good at any state, that is, ẑh

l (s) = 0 for all h ∈ H ,
all l ∈ L , and all s ∈ S . If this is the case, then, for every h ∈ H , the last sum in equation
(3) amounts to zero, and, hence, the contribution to the change of utility of every agent due to
the change in relative prices vanishes. It follows that, given a reallocation of asset holdings dθ,
Dθu only captures the effect of a pure redistribution of income so that no improvement can
be induced. However, we know that the economy (ω,u) belongs to a non-generic set since, by
changing slightly the parameter ω, we move to a new economy such that some individuals trade
at each C E , which implies that the set that contains (ω,u) is not open.

7It is well known that by adding a suitable quadratic term to uh , one can induce any perturbation of the matrix
K h(s), h ∈ H , s ∈ S , by the addition of a symmetric matrix. See, for instance, Geanakoplos and Polemarchakis
(1980).
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Remark 2. GP also show that requiring that the asset reallocation d̃θ be budget feasible for
every agent, i.e.,

∑
a∈A q̂a · d θ̌h = 0 for all h ∈ H , eliminates the direct effect on individu-

als’ utilities. We recall that q̂a = (1
/
µh) ·∑s∈S ra(s) ·λh(s) is the condition for the optimal

choice of asset a by individual h, which enables us to rewrite the said feasibility requirement as
(1

/
µh) ·∑a∈A

∑
s∈S ra(s) ·λh(s) ·d θ̌h = 0 for all h ∈H ; it follows that the first vector in equa-

tion (6) is equal to 0. But imposing budget feasibility has no consequence for the relative price
effect, and, hence, the GP result continues to apply.

Remark 3. One wants to know whether the bound on the number of agents is tight. As we
now argue, if LS < H +1 ≤ L(S +1) then the argument given to prove the result fails to hold.
We recall that Property 2, combined with the result from linear algebra given in Section 6,
only guarantees that, given a δ ∈ ∆H , the vector δT · (âλ¯∆ẑ) can be generated as desired for
LS components. The fact that we are able to control the coordinates of that vector is driven by
the differences existing among the individuals’ ratios of marginal utilities of income. But then,
since we are using a result in terms of ratios, one state must be dropped and used as a reference
to obtain the said implication as shown in the proof of Property 2. Therefore, we are able only
to control LS coordinates of the vector δT · (âλ¯∆ẑ). It follows that to show that the matrix C

has full rank, the set of vectors
{
(V 1 −V 0)¯ r0, · · · , (V H −V 0)¯ r0, (V 1 −V 0)¯ r1

}
needs to be

linearly independent when considering any LS coordinates of them, which can be achieved only
if H +1 ≤ LS.

Remark 4. Geanakoplos, Magill, Quinzii, and Drèze (1990) extend the result of constrained
suboptimality to the case of an economy with production. The key argument in their proof
resembles the one given here in that they show that, generically, there is no vector δ such that
δT ·Q = 0T , where Q is a matrix whose entries reflect the changes in the prices of products
due to changes in the level of production. So, they too focus on analysing the influence of the
price effect of a redistribution of assets and goods on welfare. However, that is done from the
perspective of the supply side of the economy, so that instead of perturbing utilities they perturb
endowments and production plans.

8. Conclusions

The role of the incompleteness of markets in generating the constrained subotimality of CE
of pure exchange economies depends crucially on the relative price effect on utilities induced
by an asset reallocation. The difficulty in proving the result for a generic set of economies is in
constructing a perturbation of the individuals’ endowments that is related to the proposed asset
reallocation in a way such that the price effect can be clearly analyzed.

If the intervention considered does not allow for a direct control of the individuals’ income
effects, then an upper bound needs to be imposed on the number of agents to achieve the result.
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