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Abstract 

This paper reviews the literature on the econometrics of median-unbiased 
estimation in panel data and provides methodological guidelines for its 
implementation. The method is then used to evaluate the well known GDP 
convergence and Purchasing Power Parity (PPP) hypotheses. In the first two 
examples, panel exactly median-unbiased estimates with yearly data show, 
respectively, fast conditional convergence rates of per capita income among 
the 48 USA contiguous states, and extremely slow convergence or non 
convergence of per capita GDP among the 32 Mexican states. In the third 
example, using monthly data for a sample of 14 developing countries, the 
results from panel exactly median-unbiased estimation show that the 
dynamics of real exchange rates is consistent with the PPP hypothesis, 
although this process is highly persistent. 
 
Key words: Panel Median-Unbiased Estimation, Dynamic Panel Data Models, 
Least Squares Dummy Variables, Cross Sectional Dependence, GDP 
Convergence, Purchasing Power Parity.  
 
JEL Classification: C33, C15, O40, F31. 

Resumen 

Este artículo revisa la literatura sobre estimación insesgada respecto a la 
mediana (median-unbiased) en modelos panel y desarrolla los lineamientos 
metodológicos para su implementación empírica. Como ilustración, este 
método es utilizado para evaluar las hipótesis de convergencia del ingreso y 
paridad del poder de compra (PPP). En los dos primeros ejemplos, los 
resultados del estimador panel exactamente insesgado respecto a la 
mediana (exactly median-unbiased) muestran, respectivamente, 
convergencia condicional relativamente rápida del ingreso por persona para 
los EE. UU. y convergencia muy lenta o ausencia de convergencia en el caso 
del PIB por persona de los estados de México. En el tercer ejemplo, 
utilizando el mismo estimador anterior se encuentra que la dinámica del 
tipo de cambio real de 14 países en desarrollo es consistente con la 
hipótesis PPP, aunque se trata de un proceso altamente persistente. 
 
Palabras clave: estimación Median-Unbiased en panel, modelos panel 
dinámicos, estimador de mínimos cuadrados con variables ficticias, 
dependencia de sección cruzada en panel, convergencia del PIB per cápita, 
paridad del poder de compra.  
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Median-Unbiased Est imat ion in Panel  Data 

Introduction 

During the last decade and a half there have been considerable developments 
on median-unbiased Estimation for auto regressive processes ( AR ). This 
method provides unbiased point and confidence interval estimates for the AR  
parameter, thus offering useful information to characterize the persistence of 
a time series process, which is particularly important in cases where the 
evidence from unit root tests may not be conclusive (Andrews, 1993). As it is 
well known, the bias of the  estimator can be quite substantial 
particularly when the 

OLS
AR  parameter is close to one and/or the sample size is 

relatively small, and can produce potentially misleading inferences. 
There are a number of important economic questions such as convergence 

of per capita GDP, price convergence and purchasing power parity, where a 
correct measurement of the persistence of the process is crucial and where 
median-unbiased estimation can play an important role. Notwithstanding, this 
method is still not popular, perhaps because of its computational burden. In 
the panel data literature, the median-unbiased estimation method is even less 
known despite the fact that in several empirical applications the time 
dimension of the panel is relatively short. 

The goal of this paper is to survey the literature on the econometrics of 
median-unbiased estimation in panel data and to provide methodological 
guidelines for its implementation. The method is then used to evaluate (i) the 
per capita Income or GDP convergence hypothesis in two different samples, 
namely, the USA and Mexican states, and (ii) the Purchasing Power Parity 
(PPP) hypothesis in a panel of 14 Developing countries. 

The rest of the paper is organized as follows. Section 1 briefly surveys the 
literature on median unbiased estimation. Section 2 describes the method in 
detail and discusses some methodological issues for its implementation. The 
empirical applications are provided in section 3 and, finally, some conclusions 
and remarks are offered in last section. 

1. Some Background 

Orcutt and Winokur Jr. (1969) is probably the first paper that focuses on 
approximately mean-unbiased estimates of the AR  parameter in stationary 
models, work that was motivated by the earlier findings by Hurwickz (1950), 
Marriot and Pope (1954) and Kendall (1954), who established the (mean) bias 
of the  estimator in OLS AR models. Later, Le Breton and Pham (1989) 
calculated exact and asymptotic biases of the OLS  estimator in stationary 
and non stationary  processes.1    )1(AR
                                                 
1 Maddala and Kim (1998), p. 141. 
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The bias or more precisely the mean-bias of an estimator is simply defined 
as the difference between the unconditional expectation of the estimator and 
the true parameter value. Thus, if the expected value (mean) of the 
estimator is equal to the true parameter value then the estimator is said to be 
unbiased or more precisely mean-unbiased. The concept of median-
unbiasedness, considers the median instead of the mean. If an estimator is 
normally distributed, there is no difference between the mean and median. 
However, in situations were the estimators have asymmetric distributions the 
concept of median-unbiasedness becomes more relevant as the median of the 
distribution is less sensitive to skewness and kurtosis problems. This is 
precisely the motivation for pursuing median-unbiased estimation as proposed 
by Andrews (1991, 1993) and Rudebusch (1992) who show the relevance and 
usefulness of this method to study the dynamics of time series where the bias 
of the  estimator can become a serious problem. Essentially the method 
consists of (i) estimating the 

OLS
AR  parameter by OLS  and (ii) correcting for the 

downward bias by matching the OLS  estimate to the median of de 
distribution of the OLS  estimator and finding its corresponding true or 
unbiased value, that is, the value ofα that generates a process for which the 
median of the distribution of the OLS  estimator is equal to the OLS  estimate 
obtained from the actual data. Obtaining the OLS  estimate is certainly a 
trivial task. However, obtaining the median-unbiased estimate requires 
computation of the distribution of the OLS  estimator. More precisely, it is 
necessary compute the median as well as other relevant quantiles of that 
distribution. In practice this can be done (approximately) by Monte Carlo 
simulations, which will turn out to be a relatively easy task using actual 
storage and processing capacity of personal computers. 

Andrews (1993) presents a comprehensive approach to median-unbiased 
estimation for first-order autoregressive-unit root models with independent 
and identically distributed normal errors.2 The author considers models with 
no intercept, intercept only, and intercept and time trend, which are the 
well-known specifications used in the time series unit root testing literature. 
Generally, the AR  parameter value is allowed to lie on the interval (-1, 1], 
which includes the unit root case. In addition to median-unbiased estimators 
and confidence intervals for the AR  parameter, the corresponding impulse 
response function, the cumulative impulse response, and the half life of a unit 
shock can also be obtained with this method. The papers by Andrews and 
Chen (1992, 1994) and Rudebusch (1992) consider median-unbiased estimation 
in the context of  processes.3  )( pAR

                                                 
2 Fuller (1995) develops an estimator that is median-unbiased in the unit root case and nearly unbiased elsewhere. 
This approach is summarized by Enders and Folk (1998). Essentially, the OLS estimate is adjusted upwards by an 
amount commensurate with the sample size and the proximity of the estimate to unity. 
3 A related approach is given in Stock (1991) who constructs unbiased asymptotic confidence intervals for the 
largest root in AR (p) processes when this root is close to one. 
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Indeed, the aforementioned work motivated several empirical 
applications. It is worthwhile to mention the papers by Kent and Cashing 
(2003), Cashin, McDermott, and Pattillo (2004), Cashin and McDermott (2003), 
Kim (2003), Murray and Papell (2002, 2005a) which were all applied in time 
series contexts. In most cases, the time series median-unbiased estimates 
imply slow convergence rates and confidence intervals consistent with shocks 
that have permanent effects.  

Cermeño (1999) extended Andrews’ (1993) approach to dynamic panel 
data models with fixed effects and homogeneous trends, showing that in 
typical macro panels the biases in the estimation of the AR  parameter using 
the estimator could be substantial even for relatively large T 
dimensions which may lead to erroneous conclusions if not taken into account. 
In particular, Cermeño’s findings show that (conditional) convergence of per 
capita GDP is only supported in the cases of 48 USA states and 23 OECD 
countries but it does not hold in wider samples of countries. 

LSDV

Further, Phillips & Sul (2003) generalize this method to cases with cross-
sectional dependence as well as full parameter heterogeneity. In addition to 
the original Panel Exactly Median-Unbiased estimator (PEMU), they propose 
the Panel Feasible Generalized Least Squares Median-Unbiased (PFGMU) for 
the case of cross-sectional dependence and the Panel Seemingly Unrelated 
Median Unbiased (SURMU) estimator for the case of complete coefficient 
heterogeneity of individual cross sections. 

It is important to mention that the previous extensions of median-
unbiased estimation to panel data have been made in the context of  
processes.4 Its generalization to  processes with heterogeneous 
dynamics and a general error covariance structure still remains to be done.  

)1(AR
)( pAR

2. Median-Unbiased Estimation 

In this section we offer a comprehensive summary on median-unbiased 
estimation in panel data, the main focus being to provide methodological 
guidelines for its implementation. In order to address the fundamental issues 
in some detail the time series approach is also included. As it will become 
apparent later, this approach will turn out to be a key component of the 
implementation of this method in panel data. 

                                                 
4 Murray and Papell (2005b) extend Andrews (1993) and Andrews and Chen (1994) median unbiased estimators to 
study the PPP hypothesis in a panel of real exchange rates of 20 developed countries. Although this extension is 
innovative in various aspects, it still assumes homogeneous dynamics for all individual series in the panel. 
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2.1. Exactly Median-Unbiased Estimation 
Consider the following latent-variable model for a time series: 

*
t ty d yβ= + ,        (1) 0,t = KT

Where  is a deterministic trend component that can take the values: 
{ ,1, (1 }, and 

d
0 , )t β  is a conformable vector of parameters which 

correspondingly can take the values: {0, 0β . )',( 10 ββ }. The coefficients 10 ,ββ  
are the intercept and trend respectively. Assume that the latent variable 
follows the (1)AR  process: 

Ttyy ttt ,,1,*
1

* K=+= − εα        (2) 

Where the error terms ( tε ) are independent and identically distributed, 

denoted 2~ . . (0, )t i i dε σ . The previous representation is quite convenient since 

if 1<α ,  becomes stationary around the deterministic trendty dβ . More 

precisely , meaning that the deviation ))1/(,0(~)( 22* ασβ −=− tt ydy )( βdyt −  
is a stationary, zero mean, process. Also, as it can be seen in  the following 
equations, the previous formulation nests the 3 cases considered in the unit 
root literature which are referred to as cases (or models) 1, 2 and 4.5 

These are also known respectively as the cases with “no intercept and no 
trend”, “intercept only” and “intercept and trend”. For the stationary case, 

1<α , from (1) and (2) we can obtain the following models in terms of the 
observable variable: 

   (4)] [case       )1()1(
   (2)] [case                                    )1(

(1)] [case                                                       
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ttt
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  (3) 

The processes in (3) are stationary around , 0 0β  and 0 1( )tβ β+  
respectively. For the unit root (non-stationary) case, 1=α , the previous 
models become: 

   (4)] [case                                                 
   (2)] [case                                                         

(1)] [case                                                         

11

1

1

ttt

ttt

ttt

yy
yy
yy

εβ
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++=
+=
+=

−

−
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  (4) 

The first two processes in (4) are random walks without drifts while the 
third one is a random walk with drift parameter 1β . It is important to remark 
that (3) and (4) include, respectively, the corresponding processes under the 
alternative (stationarity) and null hypotheses (unit root), as considered, for 

                                                 
5 See for example Hamilton (1994), pp. 487-502. 
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example, in Dickey and Fuller (1979).6 For example, the third equation in (3) 
and (4) represent respectively the well known trend stationary and difference 
stationary processes, which are competing representations for trending 
processes such as GDP, prices or money stock. 

Andrews (1993) shows that, under normality, the finite sample distribution 
of the OLS  estimator of the parameter α  in the previous  models is a 
function of a quadratic form in standard normal variables. Therefore, under 
this assumption, it is possible to compute the median and other quantiles of 
the distribution of the  estimator of

)1(AR

OLS α , exactly, using Imohf’s (1961) 
algorithm, implemented in the FORTRAN sub routines by Koerts and 
Abrahamse (1971). Specifically, given a model and a sample size , the 
quantiles of the distribution of the  estimator of 

1T +
OLS α  are computed exactly 

for a grid of parameter values on the interval ( 1,1]− . Certainly, the same can 
be done by Monte Carlo simulations, although in this case the quantiles of the 
distribution will be approximate.7  It is well known that the  estimator of 
the parameter 

OLS
α  is downward biased which implies that the mean of its 

distribution is less than the true value ofα . For example, when 1=α , the unit 
root case, and for , the mean (which is equal to the median under 
normality) of the distribution of the OLS  estimator of 

1001=+T
α  is equal to 0.957 for 

model 2 (intercept only) and 0.911 for model 4 (intercept and trend).8 Thus 
the median and mean biases of the  estimator are not negligible and can 
produce highly misleading results. In both cases we would conclude that the 
processes are stable with approximate convergence rates of 4 and 9% 
respectively, when in fact they are random walks. Therefore, the 

estimator needs to be corrected for its bias and Andrews’ approach 
performs this correction by eliminating the median bias. But before giving a 
definition of the median-unbiased estimator it is important to characterize 
the  estimator and its distribution. This is done in propositions 1 and 2 
given below. 

OLS

OLS

OLS

 
Proposition 1: Invariance of the distribution of the  estimator of OLS α  
In the previous  models 2 and 4, the distribution of the OLS  estimator 
of 

)1(AR
α  is invariant to the specific values of the deterministic components 

(intercept and time trend). Also, this distribution does not depend on , the 2σ

                                                 
6 Strictly, the processes in (3) are non-linear in the parameters. Dickey and Fuller and the foregoing unit root 
literature consider the unrestricted linear versions of these models. 
7 This procedure is described in detail later in this paper. 
8 See Andrews (1993, p. 149). This result is well know in the unit root literature and implies that the distribution of 
the Dickey-Fuller t-test for unit root is leftward skewed. It is also known, more generally, that for a given model and 
sample size, the bias becomes larger the closer to one is the AR parameter and for a given AR parameter value the 
bias becomes larger the smaller is the sample size.  
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variance of the error term, and when 1=α  it does not depend on , the 
initial value of the process.  

0y

 
See Andrews (1993) for proofs. The first part of this proposition states that 
the distribution of the  estimator does not depend on the specific values 
of the intercept and time trend. 

OLS

This result is well known in the time series literature. Intuitively, the 
inclusion of an intercept or an intercept and a time trend in the regression 
controls for the effect of these deterministic components ( . In fact, from 
partitioned regression theory, the OLS  estimator of 

)d
α  in a model that 

includes the aforementioned deterministic components is equivalent to 
regressing  onty% 1ty −% , which are residuals from the regressions of  and on 

 respectively. As it will become clear shortly, without this invariance 
property exactly median-unbiased estimation of the 

ty 1ty −

d
AR  parameter would be 

impossible since it would require prior knowledge of the specific values of the 
deterministic components. The second part of Proposition 1, that the 
distribution of the  estimator of the parameter OLS α  is invariant to the 
specific values of , is less intuitive but given that essentially this estimator 
is obtained by regressing  on , their variances cancel out. 

2σ
ty 1−ty

 
Proposition 2: Existence of a monotonically increasing  
median function of OLSα̂   
For a given  model and sample size, there exists a monotonically 
increasing relationship between 

)1(AR
α  and the median of the distribution of the 

 estimator of this parameter. OLS
 

Proposition 2 is fundamental for median-unbiased estimation since in the 
absence of a monotonically increasing median function, it would be 
impossible to map an actual OLS  estimate to a unique (median-unbiased) 
value of the AR  parameterα . Unfortunately, there is no formal proof 
available and the existence of such a relationship can only be shown by 
simulation. For the median and other relevant quantiles (.5th and .95th) there 
is overwhelming evidence supporting this proposition for models 2 and 4. 
However, Andrews (1993) points out that not every quantile exhibits this 
behavior in the case of model 1, particularly when T  is relatively small and α  
takes on values near to one. In practice it is, therefore, advisable to check 
this relationship by simulation before proceeding.  

Let ),( Tfm jj α= denote the median function of the OLS  estimator of α  

in model  and assume that Proposition 2 is satisfied. The median-unbiased 
estimator

j
)ˆ( MUα  implies inverting the previous function in order to find the 
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value ofα  for which the actual  estimate OLS )ˆ( OLSα  corresponds exactly to 
the median. This is established in the following definition, stated along the 
lines of Andrews (1993). 
 
Definition 1: Median-unbiased estimator of α  
For a given  model in (3) and for a given sample sizeT , the median-
unbiased estimator of the parameter 

)1(AR
α  )ˆ( MUα  is the value of the AR  

parameter for which the median of the distribution of the OLS  estimator of 
this parameter equals the actual OLS estimate )ˆ( OLSα . Specifically, for a 

given  model , assume that )1(AR j 10 ≤<α  and let  denote the median of 

the distribution of the  estimator of 

UR
jm

OLS α  in the unit-root case, i.e. 
when 1=α . The median-unbiased estimator of the parameter α  is defined as 
follows: 

⎪⎩

⎪
⎨
⎧

≥

<
=

−

UR
j

j
OLS

UR
j

j
OLS

j
OLSjj

MU m

mf

α

αα
α

ˆ  if                 1

ˆ  if  )ˆ(
ˆ

1

      (5) 

 
The previous definition can be symmetrically extended to the 
cases 01 ≤<− α .9 However, we focus here on positive values of the AR  
parameter for practical reasons. First, most economic phenomena do not 
seem to exhibit oscillatory dynamics, i.e. cases in which the AR  parameter is 
negative. Secondly, several economic processes seem to be highly persistent, 
which is consistent with AR  parameter values close to one. This will in fact 
be the case of the empirical applications considered in the next section.  

According to Definition 1, the median-bias is subtracted from the OLS  
estimate thus providing an unbiased estimate. Actually, the median-bias is 
eliminated completely. For example, using the previous results for model 4, if 
the actual  estimate happens to be 0.911, the median-unbiased estimate 
will be equal to 1, which is precisely the value of the 

OLS
AR  parameter for which 

the median of the distribution is equal to the actual  estimate (0.911). In 
this case the median-unbiased point estimate is equal to 1 which is consistent 
with the unit root hypothesis. 

OLS

Implementing median-unbiased estimation requires computing the median 
of the distribution of the OLS  estimator for each possible value of the AR  
parameter. More explicitly, for a given model and sample size we must obtain 
the median function which relates the AR  parameter value with the median 
of the distribution of the  estimator of this parameter. We then use the 
median function to find the 

OLS
AR  parameter value that corresponds to a given 

 estimate which is equated to the median. In practice, the median OLS

                                                 
9 See Andrews (1993) for details. 
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function is a discrete set of pairs and median-unbiased estimates are 
obtained by finding the median value that equals the OLS  estimate computed 
using the actual sample and locating its corresponding pair which 

will be the median-unbiased estimate . Given that  will hardly 

coincide exactly with , interpolation will be needed in most cases.   

),( jj mα

)ˆ( j
OLS

jm α=
)ˆ( j

MU
j αα = j

OLSα̂
jm

Interval estimation is performed analogously, applying the previous 
concepts to the appropriate quantiles. That is, for quantiles other than the 
median, we can use Definition 1 after replacing the median function by the 
appropriate function for the thp  quantile. Thus, the interval limits will be 
given by the AR  parameter values for which the OLS  estimate equals the 
corresponding interval quantiles. For 90% confidence intervals, the .05th and 
.95th quantiles are used. Figure 1 below illustrates the previous ideas. The 
horizontal axis represents different values of α  over the interval [0  while 
the vertical axis represents the 0.95th, 0.5th (median) and 0.05th quantiles of 
the distribution of the OLS  estimator of this parameter.10 

,1]

 
FIGURE 1: POINT AND INTERVAL MEDIAN-UNBIASED ESTIMATION 
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Two important points are worth noting. First, the relationship between the 
quantiles of the distribution and the value of α  seems to be monotonically 
increasing, supporting Proposition 2. Second, the fact that the OLS  estimator 
is downward median-biased can be seen by observing that the median 

                                                 
10 Values from Table III, for  from Andrews (1993, p.151) are used here and they correspond to the 
model that includes an intercept plus a linear time trend. 

1 100T + =
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function lies below the 45 degree line. Finally, the closer to one is α  the 
higher is the median bias of the  estimator.11 OLS

Median-unbiased estimation proceeds as follows. The value of the OLS  
estimate (uncorrected) which is assumed to be exactly equal to 0.751 
(vertical axis) is mapped to its median-unbiased estimate using the median 
function, which gives a value of exactly 0.8 on the horizontal axis.  

Therefore, the median-unbiased estimate will equal 0.8. The 90% 
confidence interval is found by mapping the same OLS  estimate to the 0.95th 
and 0.05th quantiles respectively. This gives approximately the 
interval[0 .12  .7,0.93]
 
2.2. Approximately Median-Unbiased Estimation 
Andrews and Chen (1994) extend Andrews (1993) median-unbiased estimation 
method to ( )AR p  models. However, in this case the method will only be 
approximate since it relies on simulation rather than exact computation of the 
quantiles of the distribution of the  estimator and also because the 
unknown nuisance parameters must be estimated using an iterative algorithm.  

OLS

Consider the following latent variable model with an intercept and time 
trend: 13 

*
0 1t ty tβ β= + + y T, for 1,t p= − + K     (6) 

Where the latent variable follows the ( )AR p  process: 

 
* * * *

1 1 2 2t t t p t py y y y tφ φ φ− − −= + + + +K ε T,  for 1,t = K   (7) 

The error process is assumed . The previous process can equivalently 
be expressed as: 

),0(.. 2σdii

 
* * * *

1 1 1 1 1t t t p t py y y y tα ψ ψ− − − − += + ∆ + + ∆ +K ε T, for 1,t = K   (8) 

Andrews and Chen assume that  is stationary whenever *
ty ( 1,1)α ∈ −  while *

ty∆  
is stationary when 1α = . This is equivalent to assuming that only the largest 
root of the characteristic polynomial in (7) can be equal to one. From (6) and 
(8) we can obtain: 

0 1 1 1 1 1 1t t t p ty t y y y p tδ δ α ψ ψ ε− − − − += + + + ∆ + + ∆ +K     (9) 

Where 0 0 1 1 1(1 ) ( )t pδ β α β α ψ ψ − += − + − − −K  and 1 1(1 )δ β α= − . The invariance 

properties of the distribution of OLS  estimator of α  in model (9) can be 
summarized in the following proposition. 
                                                 
11 Obviously, the smaller the sample sizes the larger with be the downward biases.  
12 For simplicity we have taken the closest values to 0.751 given in Andrews Tables. These are 0.746 for the .05th 
quantile and 0.768 for the 95th quantile. More precise values can be found either by interpolation or by computing 
these quantiles over a finer grid around 0.65 and 0.95. 
13 We focus here on case 4 only (model with intercept and time trend). A similar approach applies to cases 1 and 2. 
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Proposition 3: Invariance of the distribution of the  estimator of the 
parameter

OLS
α  

The distribution of OLS  estimator of α )ˆ( OLSα  in model (9) depends 

on 1( , , , p 1)α ψ ψ −K . It does not depend on 2
0 1,   or  β β σ and in the case 1α =  it 

does not depend on the initial value 1t py∗
− + . 

 
Proofs can be found in Andrews and Chen (1994, p.203). The previous 
proposition implies that Andrews (1993) exactly median-unbiased estimator 
cannot be applied in this context since 1( , , )p 1ψ ψ −K  are unknown. Andrews 
and Chen (1994) propose an iterative procedure to obtain approximately 
median-unbiased estimates. This is given in the following definition. 
 
Definition 2: Approximately median-unbiased estimator 
An approximately median-unbiased estimator of the parameter 
vector ),,,,,( 1110 −pψψδδα K  in model (9), denoted by  can 
be determined using the following iterative algorithm: 

AMUp )ˆ,,ˆ,ˆ,ˆ,ˆ( 1110 −ψψδδα K

Estimate model (9) by OLS  to obtain , where the 

supra index  denotes the first iteration. 

)1(
1110 )ˆ,,ˆ,ˆ,ˆ,ˆ( OLSp−ψψδδα K

)1(
Treat  as true parameter values and obtain the exactly median 

unbiased estimator . 

( )1(
11 ˆ,,ˆ

OLSp−ψψ K )
)1(ˆMUα

Treat  as true parameter value and compute new values of )1(ˆMUα
( )11 ˆ,,ˆ −pψψ K  from the  regression of 

on .Call them

OLS

)ˆ( 1
)1(

−− tMUt yy α ),,,,1( 11 +−− ∆∆ ptt yyt K ( ) )2(
11 ˆ,,ˆ

OLSp−ψψ K . If , 

exclude t  from the regression, as implied by equation (9).  

1ˆ )1( =MUα

Treat the new values as given and compute again the 

exactly median unbiased estimator . 

( )2(
11 ˆ,,ˆ

OLSp−ψψ K )
)2(ˆMUα

Repeat steps (iii) and (iv) until convergence or for a given number of 
iterations.  

 
The Andrews-Chen algorithm will produce the following vector of estimates: 

( ){ })1(
1110

)(
1110 ˆ,ˆ,ˆ,ˆ,ˆ)ˆ,,ˆ,ˆ,ˆ,ˆ( +

−− =
J

OLSp
J

OLSAMUp ψψδδαψψδδα KK    (10) 

Once convergence is achieved at iteration , the approximately median-
unbiased estimator of the 

J
AR  parameterα , denoted AMUα̂ , will be equal to 

the  estimate found in step (iv). That is, . Consequently, the OLS )(ˆˆ J
OLSAMU αα =
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approximately median-unbiased estimator of the remaining parameters will 
be obtained at iteration )1( +J  from the regression of )ˆ( 1−− tMUt yy α  on 

in the case),,,,1( 11 +−− ∆∆ ptt yyt K 1ˆ <MUα , or from the regression of )ˆ( 1−− tMUt yy α  

on if),,,1( 11 +−− ∆∆ ptt yy K 1ˆ =MUα . These are denoted as ( ) )1(

1110 ˆ,,ˆ,ˆ,ˆ +

−

J

OLSpψψδδ K  in 

equation (10). 
The only difficulty in the previous procedure is the computation of  in 

steps (ii) and (iv). In order to do this it is necessary to compute the median 
function which will be given by the set of pairs

)(ˆ j
MUα

),( mα , whereα  is a given 
value on the interval , and  is the median of the distribution of]1,1[− m OLSα̂ . 
This can be carried out through Monte Carlo simulations as follows: 

Take the results of a given iteration ( ) )(

1110 ˆ,,ˆ,ˆ,ˆ j

OLSp−ψψδδ K  as well as the 

sample size and a given value of α  as fixed and randomly generate a large 
number of  processes (say 200,000) as described by equation (9). The 
error term can be obtained from a standard normal distribution, which implies 
assuming . 

)( pAR

12 =σ
For each randomly generated sample estimate model (9) by OLS  and 

store the value OLSα̂  in some vector. 
Compute the empirical distribution of OLSα̂ , particularly the median  

and other relevant quantiles. This will give the pair
)(m

),( mα  for the case of the 
median function. 

Repeating the previous procedure for a relevant grid of values of α  will 
produce the desired median function. The median-unbiased estimate can then 
be obtained as shown in Definition 2. That is, by matching the  estimate 
from regression (9), based on actual data, to the closest median value and its 
corresponding pair, which is the median-unbiased estimate of the 

OLS

AR  
parameter.  
 
2.3. Panel Exactly Median-Unbiased Estimation 
Exactly median-unbiased estimation can be extended to panel data. The 
simplest case is considered by Cermeño (1999). This is a straightforward 
extension of Andrews (1993) to panel data with homogeneous dynamics and 

 disturbances. Further, Phillips and Sul (2003) formulate a more general 
approach and consider a wider variety of models and estimators including 
parameter heterogeneity and cross-sectional correlation. 

... dii

Consider the following panel model with a latent variable: 
∗++= ittiit yy λµ ,  and Ni ,,1K= Tt ,,0 K=      (11) 

Where the index i  refers to individuals or cross-sections such as firms or 
countries, and t  indexes time periods. Thus, the panel is made up of )1( +T  
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observations for each of the  individuals or cross-sections. In the panel data 
literature, 

N
iµ  and tλ  are referred to as individual and time specific effects 

respectively and can be treated as fixed or random. In this paper, they are 
treated as fixed parameters. The latent variable follows the (1)AR  process: 

ittit yy εα += ∗
−

∗
1 ,  and Ni ,,1K= Tt ,,1K=      (12) 

The error term )( itε  is assumed to be independent and identically distributed 

both across time and individuals, denoted . This assumption 
implies homoskedastic, non autocorrelated as well as cross sectionally 
independent errors.14 Explicitly: 

),0(..~ 2σε diiit

stjiE

stjiE

stjiE

jsit

jsit

jsit

=≠=

≠==

===

,for    0),(

,for    0),(

,for    ),( 2

εε

εε

σεε

      (13) 

Certainly, this assumption can be quite strong in a panel context and caution 
should be exercised in practice. We will turn back to this point later in this 
section. 

From (11) and (12) we can obtain the following panel model in terms of 
the observable variable: 

itittiit yy εαλµ +++= −1
00

, Ni ,,1K=  and Tt ,,0 K=    (14) 

Where  and . In panel regression, )1(0 αµµ −= ii 1
0

−−= ttt αλλλ α  can be 
estimated by  either after including individual specific and time specific 
dummy variables in the regression or by performing the so called Within 
transformation which is based on partitioned regression. 

OLS

In both cases, the OLS  estimator yields the same result and is generally 
known as the Least Squares Dummy Variable ( ) estimator.15 The 
invariance of the estimator of 

LSDV
LSDV α  in model (14) is established in the 

following proposition: 
 
Proposition 4: Invariance of the distribution of the estimator of LSDV α   
Under the assumption that , the distribution of the 

estimator of 
),0(..~ 2σε diiit

LSDV α )ˆ( LSDVα  in model (14) is invariant to the specific values 

of iµ , tλ , and when 2σ 1α =  it does not depend on the initial values . This 
invariance property also holds for the cases (i) 

0iy
0,0 =≠ λµi , (ii) 0,0 =≠ λµi  

and (iii) tti βλµ =≠ ,0 . 
 

                                                 
14 The possibility of non contemporaneous cross correlation is ruled out elsewhere in the panel data literature and 
is ruled out here as well. 
15 See Baltagi (2003) or Hsiao (2002) for details on these panel data estimators.  
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Cermeño (1999) offers simulation evidence that supports this proposition. 
Phillips and Sul (2003) also show the monotonicity of the median function for 
the cases (i) 0,0 == λµi , (ii) 0,0 =≠ λµi  and (iii) tti βλµ =≠ ,0  and for sample 
sizes 5≥N  a 0 . 

Th arian rty
nd 21≥+T

e inv ce prope  of the estimator in (14) can intuitively be 
see  tran

 LSDV
n by considering that the within sformation wipes out the individual 

and time specific effects. Therefore, the estimator ˆLSDVα  and its distribution 
are independent of these effects. The previous papers also show by simulation 
that, the median and other relevant quantiles are strictly increasing functions 
ofα , condition that is required for implementation of median-unbiased 
estimation. The following definition is a straightforward extension of 
Definition 1 to the panel data case under the previous assumptions. 
 
Definition 3: Panel exactly median-unbiased estimator of α  
Let ),,( TNfm α= denote the median function of the LSDV estimator of α  
(0 < 1≤α ) for a g e

e medi
iven sample size ),( TN  in model (14) and let URm  denot  

th an of the distribution of th DV estimator of e LS α  when 1=α . The 
panel exactly median-unbiased estimator of α  is defined as ollows:

⎧ <− URmf αα ˆ  if  )ˆ(1

 f  

⎪⎩

⎪
⎨

≥
=

UR
LSDV

LSDVLSDVj
MU mα

α
ˆ  if                   1

ˆ      (15) 

Andrews (1993) was able to compute the quantiles of the distribution of the 
OLS  estimator of the parameter α  exactly for the time series case. For the 

l data case this can be done approximately using Monte Carlo simulations 
as follows: 

Take i

pane

µ , tλ  as well as a sample size  and a given value of ),( NT α  as fixed 
and randomly generate a large number of 

nerated sample, estimate model (14) using the 

)1(AR  processes as described by 
equation (14). The error term can be drawn from a standard normal 
distribution )1( 2 =σ , assumption that is immaterial given the invariance 
property in Proposition 4. 

For each randomly ge
LSDV  estimator and store the value LSDVα̂  in some vector. 

mpute the empirical distributio  LSDVCo n of α̂  particularly the median
and

 )(m  
 other relevant quantiles. This will give pair ),( m the α  for the case of  

median function. 
The median fu

the

nction can be obtained by repeating the previous procedure 
for a relevant grid of values ofα . Once the median function is obtained, the 
median-unbiased estimator can then be computed as shown in Definition 4. 
That is, by matching the LSDV  estimate from regression (14), based on 
actual data, to the closest median value )(m  and finding its corresponding 
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pair )(α  which will be the panel exactly median-unbiased estimate of the AR  
parameter.  

As we mentioned before, the assumption of  errors may not be 
app

... dii
ropriate in the panel case. Two possible avenues can be followed to deal 

with this potential problem: (i) model explicitly any departures from this 
assumption, and (ii) check the robustness of the median-unbiased estimator 
obtained under the ... dii  assumption when in fact this assumption is violated. 
Cermeño (1999) followed the last approach, showing that for autocorrelation, 
heteroskedasticity as well as cross-sectional correlation patterns of 
magnitudes similar to those found in the actual data, the PEMU estimator is 
quite robust and re-estimation of quantiles considering the previous problems 
leads to essentially the same conclusions. Phillips and Sul (2003) focus on the 
first avenue and develop a more general framework that explicitly considers 
cross-sectional correlation as well as heterogeneous AR  parameter values. 
This is described in the following two sections. 
 
2.4. Panel Feasible Generalized Median-Unbiased Estimation 

 Consider now that the error term in (12) is not independent among cross
sections. In this case, the expectation in the third line of (13) is different 
from zero, that is 

E ijjsit stji=),( σεε =≠≠ ,for    0       (16) 

 the moment that for all st =  the covariance matrix of the vector Assume for
of disturbances τεεε ],,[ 21 Nttt K  is known and is given by the NxN  matrixV . 
The supra index τ  denotes the transposition operator. 

Letε be a vector of dimensionTN  that stacks the N individual vectors of 
res

TIVΩ ⊗=       (17) 
Where  denotes the Kronecker p

Iε =− )'1
        (18) 

This implies that for a

idua , each of dimensionT . It is well known that the covariance matrix of 
ε  can be expressed as 

)()( ECov εεε == τ

ls

)(

roduct. From GLS  theory it is also well ⊗
known that  

E εΩ( NT

 given matrix V  we can perform the well known GLS  
transformation on (14) and compute the GLS  estimator of the parameters. 
Also, with a consistent estimate of V  the feasible GLS  estimator can be 
obtained. For a given V  it is possible to compute the m an function for the 
GLS  estimator and correct for the bias using median-unbiased estimation. For 

 T  and small N  panels, computation of the FGLS  estimator based upon 
a general covariance structure given by V  follows straightforwardly. 

edi

large
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However, for small T and large  or large T and large  panels the  
estimator does not exist. 

N N FGLS

Phillips and Sul (2003) consider a specific pattern of cross-sectional 
correlation by specifying an error term with a common time effect which can 
impact differently each cross section. This is, 

 ittiitu εθδ +=          (19) 

Where ),2,1(ii K=δ , N  are parameters, )1,0(...~ Ndiitθ  over  and 

 over  and 

t
),0(...~ 2

iit Ndii σε t sjsit θεε ,,  are independent for all  and for 

all . In this setting, the covariance among cross sections is given by 

ji ≠
ts,

 jijtituuE δδ=)(         (20) 
The latent variable model now consists of the following two equations 

∗++= ittiit yy λµ ,  and Ni ,,1K= Tt ,,0 K=      (21) 

 ,  and tittit uyy += ∗
−

∗
1α Ni ,,1K= T,,1K=      (22) 

As in the previous subsection, form (21) and (22) the following model can be 
obtained in terms of the observable variable : ity

 ,itittiit uyy +++= −1
00 αλµ Ni ,,1K=  and Tt ,,0 K=    (23) 

Where  and . Assume that  is defined in equation 
(19). Consider the cases (i) 

)1(0 αµµ −= ii 1
0

−−= ttt αλλλ itu
0== ti λµ  (ii) 0,0 =≠ ti λµ  and (iii) 

0,0 ≠≠ ti λµ and assume that tt βλ = . Under these assumptions, the 
distribution of the panel  estimator of GLS α  has a similar invariance 
property than the PEMU estimator. This is formulated in the following 
proposition. 
 
Proposition 5: Invariance of the distribution of the panel   GLS
estimator of α   
Under the previous assumptions, the distribution of the panel  estimator 
of 

GLS
α )ˆ( PGLSα in model (23) depends only onα in all cases. When 1α = , it does 

not depend on the initial values  in cases (ii) and (iii). 0iy
 

See Phillips and Sul (2003). This invariance property is remarkable and the 
intuitive explanation is that we are regressing  on  and performing the 

 transformation only implies re-scaling both of them. Unfortunately, in 
practice the covariance matrix is unknown and must be estimated (this is the 
panel feasible GLS  estimator) and in this case the previous invariance 
property will not hold in general. However, Phillips and Sul (2003) show that 

ty 1−ty
GLS
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provided a consistent estimator of the covariance matrix is used, the previous 
invariance property will hold asymptotically and they propose the following 
iterative procedure to obtain this estimator. 
 
Definition 4: Panel feasible GLS  median-unbiased estimator of α  
The panel feasible median-unbiased estimator of the parameterα  in model 
(23) denoted PFGLSMUα̂ , can be determined from the following iterative 
algorithm: 

Start by assuming cross-sectional independence and obtain the panel 
exactly median-unbiased estimator 

Using the estimated residuals from (i) construct an estimate of the error 
covariance matrix V , following Phillips and Sul (2002), section 4.2 ˆ

Using V  compute the panel feasible  ˆ GLS
Obtain the panel feasible GLS  median-unbiased using the median 

function of this estimator, not the panel exactly median-unbiased estimator  
Repeat steps (ii) to (iii) but in step (ii) use updated residuals from (iv) 

until the panel feasible GLS  median-unbiased estimator converges 
 

As in the previous cases, computation of the median function for the panel 
feasible  estimator can be done by Monte Carlo simulations. These 
simulations are similar to the ones explained for the panel exactly median-
unbiased estimator, with the only difference being that in this case the 
residuals in the data generation process have a contemporaneous covariance 
pattern given by , which is the estimated covariance matrix of residuals. 

GLS

V̂
 
2.5. Panel SUR Median-Unbiased Estimation 
The previous models assume the same AR parameter for all cross sections in 
the panel. This assumption can be relaxed by considering the following latent 
variable model: 

∗++= ittiit yy λµ ,  and Ni ,,1K= Tt ,,0 K=      (24) 

ittiit uyy += ∗
−

∗
1α ,  and Ni ,,1K= Tt ,,1K=      (25) 

In this case the following model is obtained in terms of the observable 
variable: 

 ,ititiitiit uyy +++= −1
00 αλµ Ni ,,1K=  and Tt ,,0 K=    (26) 

Where  and . )1(0
iii αµµ −= 1

0
−−= titt λαλλ

Phillips and Sul consider the cases with 0== ti λµ  (model M1), 0,0 =≠ ti λµ  
(model M2) and tti θλµ =≠ ,0  (model M3), which are analogous to the models 
with no intercept and no time trend, intercept only and intercept and time 
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trend, mentioned before.  In addition, these authors allow for cross-sectional 
dependence of the form given in equation (19) and show that using this 
information can lead to substantial efficiency gains. The iterative procedure 
for median-unbiased estimation in this setting is outlined as follows. 
 
Definition 5: Panel SUR median-unbiased estimator of iα  
The panel SUR median-unbiased estimator of the parameter iα  in model (26), 

denoted as iSURMUα̂ , can be determined iteratively as follows: 
Assuming cross-sectional independence, obtain exactly median-unbiased 

estimates for each series NiiEMU ,,1,ˆ K=α   and use the estimated residuals to 

construct an estimate of the error covariance matrix V  as in Phillips and Sul 
(2003). 

ˆ

Using V  compute conventional SUR estimates for the panel ˆ iSURα̂ . 

Obtain the panel SUR-MU estimates by matching each iSURα̂  to its 
corresponding median-unbiased estimate using the median function of 

the iSURα̂ estimator.  
Repeat steps (i) to (iii) until the panel SURMU converges. 
 

It is important to remark that in step (iii) we need to obtain the median-
function of the iSURα̂  estimator. As before, this can be achieved by Monte 
Carlo simulations as follows: 

For a given sample size and a parameter value Nii ,,1, K==αα  generate a 

large number of processes using errors with a covariance structure given by  
(obtained at step ii) at each point in time.  

V̂

For each process, compute th iSURe α̂  estimator and store it in some 
matrix. 

Compute the empirical distribution of the stored iSURα̂  estimates, 
par . 

for
ticularly the median as well as other relevant quantiles
Repeat (i) to (iii) for a relevant grid of values  αα =i  to obtain the 

airs of values that will define the median function. p
 
2.6. How far Panel Median-Unbiased Estimation has reached? 
The median-unbiased estimation techniques have been extended to panel and 
proved to be useful tools for empirical analysis. The most important 
contribution from a theoretical and methodological point of view has probably 
been made by Phillips and Sul (2003), as they generalize the simplest panel 
exactly median-unbiased estimator (PEMU) to the case that considers 
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coefficient heterogeneity as well as heteroskedastic and cro rrelated 
disturbances (PSURMU). However their approach is focused on )1(AR dynamic 
process. On the other hand, as we have mentioned in the previous section, 
more recently Murray and Papell (2005b) apply Andrews and Chen  
approximately median-unbiased estimation, which deals with )( pAR  
processes, to panel data but their application is limited to homogeneous 
dynamics for all individual time series in the panel. Clearly, a model with 
heterogeneous dynamics as well as heteroskedastic and cross-correlated 
disturbances in the panel will 

ss-co

(1994)

be a natural extension of the panel median-
unb

et more accurate characterizations of the dynamics of real 
phenomena. 

3. Empirical Applications 

d in this paper under less restrictive assumptions. This is 
ngoing research. 

stent with conditional convergence. The 
following panel model is considered

iased estimation literature. 
More recently, Cermeño and Grier (2006) have addressed the modeling of 

conditional heteroskedasticity and cross-sectional correlation in panel data. 
These authors point out that despite it is well known that most 
macroeconomic and financial processes are conditionally heteroskedastic, the 
empirical panel data literature in these areas has practically ignored this fact. 
The literature on panel median-unbiased estimation is not an exception. Thus, 
considering a time varying covariance matrix of disturbances as well as 
suitable non linear models to capture this behavior might be worth overtaking 
in order to g

In this section we present three empirical applications of panel median-
unbiased estimation. The first two applications investigate the well known 
hypothesis of convergence in per capita GDP for the cases of the USA and 
Mexican states. The third empirical application, evaluates the PPP hypothesis 
using data on real exchange rates of 14 developing countries. In all cases 
focuses on determining if point median-unbiased estimates are consistent with 
stationary, mean reverting processes or not. It is important to remark that the 
results discussed in this section are preliminary and they are based on panel 
exactly median-unbiased estimation only. These results will certainly 
constitute benchmarks for implementing the complete set of median-unbiased 
estimators discusse
o
 
3.1. Convergence among the USA states 
In this application we explore, whether the dynamics of per capita income of 
the 48 contiguous USA states is consi

. 

ititiit yty εαβαµ ++−+= −1)1(       (27) 
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This model is obtained from (11) and (12) under the assumption that tt βλ = . It 
is also assumed that iµ  are different and statistically significant, which is 
consistent with existing empirical evidence. In the case 10 <<α  the per 
capita income process would be consistent with conditional convergence and 
will be characterized as a trend stationary process. In this case, state 
economies will grow at the same average rate. On the other hand, when 1=α  
the process will have a stochastic trend and therefore it will be non 
convergent. In this case, the per capita income of the different states will be 
growing at different rates. 

Similarly than in unit root testing, we also want to evaluate the null 
hypothesis 1:0 =αH  (non convergence) against the alternative 1:1 <αH  
(conditional convergence). Thus, in addition to point median-unbiased 
estimates, we obtain 90% interval unbiased estimates. If the upper bound of 
the 90% confidence interval lies below unity, the null hypothesis  would be 
rejected (at the 10% significance level in this case) result that would agree 
with conditional convergence. 

0H

We use per capita income data for the 48 contiguous states during the 
period 1929 to 2005. The  estimate of LSDV α  is equal to 0.8318. The 
corresponding panel exactly median-unbiased estimate is equal to 0.8587 and 
the lower and upper bounds of the 90% confidence interval are 0.8419 and 
0.8756 respectively. See Table 1 (case N=48, T+1=77) for tabulated quantiles 
of the distribution of this estimator. Clearly, the point and interval median-
unbiased estimates support the hypothesis of conditional convergence even if 
we considered broader confidence intervals. The implied speed of 
convergence is approximately 15.23% which is relatively high but actually it is 
not surprising given the high degree of factor mobility across the USA states. 
These results are in line with previous findings by Evans (1997) but certainly 
differ sharply from those based on cross-sectional regressions, such as the 2% 
convergence rate reported by Barro and Sala-i-Martin (1991, 1992).16 Clearly, 
the fixed effects bias of the OLS  estimator used in these studies produces 
highly misleading results. 

In order to have a better picture of the degree of heterogeneity in the 
previous panel, we have obtained median-unbiased estimates for each state 
separately, following Andrews (1993). 

                                                 
16 Evans (1997) shows that the conventional cross-section regression approach produces inconsistent estimates of 
convergence rates given its inability to control for all cross economy heterogeneity. Using Stock (1991) approach, 
Evans finds an average converge rate of 15.5% for the 48 U.S. contiguous sates. 
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It should be pointed out, though, that given the relatively short time span, 
biases are expected to be higher than in the panel data case. For the same 
reason, unbiased confidence intervals are much wider in the time series 
case.17 A few facts should be remarked. First, the median-unbiased point 
estimates are relatively homogeneous and concentrate on the interval (0.81, 
0.94) with an average value of 0.87 and a standard deviation of 0.03. Roughly, 
the previous average median unbiased estimate of the AR  parameter implies 
a convergence rate of 13.9 %.  Secondly, the median-unbiased point estimates 
are consistent with the conditional convergence hypothesis for all states. This 
is a remarkable result since the point estimates indicate that all series are in 
fact trend stationary, which it is consistent with the panel results and the 
problem of having stationary and non stationary series within the panel is not 
present here. As expected, the time series unbiased 90% confidence intervals 
are consistent with the unit root hypothesis in all but two individual series, 
supporting the non convergence hypothesis.18 This result simply confirms that 
with a relatively small number of time series observations it is impossible to 
distinguish unit root from near to unit root dynamics. Figure 2 plots the time 
series median-unbiased estimates and corresponding 90% confidence intervals. 

Overall, both the panel data and time series median-unbiased estimates 
are consistent with conditional convergence hypothesis and indicate 
convergence rates of 15.2 and 13.9% respectively.  

 
 
 

FIGURE 2: MEDIAN-UNBIASED ESTIMATES AND 90% CONFIDENCE  
INTERVALS FOR THE USA STATES 
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17 Compare corresponding panels of Table 1 (panel data) and Table 2 (time series). 
18 Table 3 shows median unbiased and 90% confidence intervals for each USA state. 
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3.2. Convergence among the Mexican states 
The previous convergence hypothesis can also be evaluated in the case of the 
Mexican states.  

This avenue of research is particularly relevant given the availability of a 
newly constructed yearly GDP data base for the 32 Mexican states over the 
period 1940 to 2004 by German-Soto (2005).19 As it was pointed out in 
Cermeño (2001), the extremely limited time span of available time series of 
the GDP for the Mexican states, has made it difficult to test convergence 
hypotheses in the past, forcing most researchers to assume a priori some form 
of convergence, usually absolute convergence. In fact, this author attempts to 
distinguish between absolute and conditional convergence finding no support 
for absolute convergence. 

Notwithstanding, as Garrido (2007) points out, the available information 
used in all previous studies about convergence in Mexico is seriously limited 
both in terms of time span and reliability. The present application attempts to 
contribute to the convergence debate by applying median-unbiased 
estimation to the newly available yearly data base. 

For the case of the Mexican states, the  estimate is equal to 0.94. 
However, after the correction for the median bias we obtain a median-
unbiased point estimate of 0.9844, which certainly indicates a trend 
stationary although highly persistent, near to unit root, process. See Table 1 
(case N=32, T+1=65) for tabulated fractiles of the distribution of the  
estimator for this case. Roughly, the implied convergence rate in the case of 
Mexico is 1.57 per year with a corresponding half-life of 44.1 years. 
Differently than in the USA case, the 90% confidence interval ranges between 
0.97 and 1.00, thus including the possibility of non convergence. 

LSDV

LSDV

It is important to remark that even if no form of convergence is supported 
when taking all 32 states it is still possible to find some convergence clusters 
or “clubs” at the regional level or by pairs of states. Precisely, Garrido (2007), 
using a time series approach, finds some evidence in favor of absolute and 
conditional convergence among pairs of states in Mexico, although he also 
remarks that in no case the previous results are favored in more than 50% of 
the pairs. 

As expected, the time series median-unbiased estimates are consistent 
with difference stationary processes.20 Differently than in the USA states case, 
where all individual median-unbiased estimates lie below unity, in the 
Mexican case only in 10 cases (out of 32) the point median unbiased estimates 
are consistent with conditional convergence. Also, all but one unbiased 90% 
confidence intervals do not reject the maintained null hypothesis of non 
convergence. See Figure 3 for a plot of these results. To give a numerical 
idea, the time series median-unbiased estimates are in the range (0.60, 1.15), 
                                                 
19 See Garrido (2007) for details on how this data base was constructed. 
20 See Table 4 for a complete list of individual median unbiased estimates and the corresponding plot. 
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with an average of 1.00, and standard deviation of 0.14. Thus, the average 
median-unbiased estimate of individual states does not support the 
conditional convergence hypothesis, pointing to a situation where economies 
are growing at different rates. 

 
FIGURE 3: MEDIAN-UNBIASED ESTIMATES AND 90% CONFIDENCE  

INTERVALS FOR THE MEXICAN STATES  
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Overall, both the interval panel estimates and the time series point 

estimates are consistent with the non convergence hypothesis in the case of 
the Mexican states. Using the point panel median-unbiased estimates only we 
can argue in favor of conditional convergence although with a remarkably 
slow convergence rate. 
 
3.3. The PPP hypothesis in 14 Developing Countries. 
This application attempts to evaluate the well known purchasing power parity 
hypothesis (PPP). Consider the following model: 

itititit uppe +−= *         (28) 

Where  is the logarithm of the nominal exchange rate in country  and 

 are the price levels in the domestic and foreign country (USA in this 
case) respectively (also in logarithms). 

ite i
*, itit pp
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The disturbance term  can be viewed as a temporary deviation from 
parity. One popular test of the PPP hypothesis is made by evaluating whether 
there is cointegration among , with cointegration vector equal 
to . Essentially, given that the previous variables are integrated to 
order one, denoted , if they are in fact cointegrated, the deviations  
must be a zero mean stationary process. In this case, the deviations from the 
PPP will only be temporary. An alternative approach is to consider, instead, 
the real exchange rate defined as  and to evaluate if this 
process is stationary. That is, to evaluate whether the real exchange rate is a 
mean reverting process or not. Sometimes this approach is referred to as 
restricted cointegration, since in this case the restriction that the coefficients 
are equal to  is imposed a priori. This approach is suitable for median-
unbiased estimation and will be used here. In order to test the PPP hypothesis 
consider the model: 

itu

*,, ppe
)1,1,1( −

)1(I u

*
itititit ppeq +−=

)1,1,1( −

ititiit qq εααµ ++−= −1)1(        (29) 
This model corresponds to case 2 mentioned in the previous section and 
allows for individual fixed effects under the alternative hypothesis that the 
PPP holds 1:1 <αH . The null hypothesis is 1:0 =αH , in which case the PPP 
hypothesis will not hold. For this application, we use monthly data on real 
effective exchange rates for 14 developing countries over the period July, 
1978 to September, 2003.21 

In the present case the  estimate (uncorrected) is equal to 0.9769. 
The corresponding median-unbiased estimate of this parameter is equal to 
0.9853 and the unbiased 90% confidence interval has bounds of 0.9791 and 
0.9919. See the estimated quantiles of the distribution of this estimator in 
Table 1 (case N=14, T+1=303). 

LSDV

Certainly, both the point and interval unbiased estimates are consistent 
with the PPP hypothesis, although they indicate that the real exchange rate 
process is highly persistent and convergence towards steady state parity levels 
happens at the slow rate of 1.48%. This rate of convergence implies a half life 
estimated time of 46.8 months, about 4 years.  

The evidence from time series estimates indicates that 5 out of the 14 
developing countries do exhibit non mean reverting real exchange rate 
processes (See Table 5). Figure 4 illustrates median-unbiased estimates and 
90% confidence intervals for this sample of countries. For the other 9 
countries the processes are stationary although in 2 cases the point median-
unbiased estimates indicate that real exchange rates do follow near to unit 
root dynamics. In terms of unbiased 90% confidence intervals, in all cases the 
PPP hypothesis is not supported, despite the relatively large time span of the 

                                                 
21 The author acknowledges Kevin Grier and Robin Grier for generously providing this data base. 
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series. Overall, the panel evidence points to stationary but extremely 
persistent real exchange rate processes which is consistent with the mix of 
unit root and stationary but near to unit root processes found by examining 
individual time series. 

 
FIGURE 4: MEDIAN-UNBIASED ESTIMATES AND 90% CONFIDENCE INTERVALS 

FOR THE RER IN 14 DEVELOPING COUNTRIES 
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These findings are in line with other results found in the empirical 

literature on the dynamics of real exchange rates that also show either non-
reverting or extremely slow mean reverting processes, as documented for 
example in Murray and Papell (2002, 2005a). 
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Conclusions 

In the last decade we have seen important developments on panel median-
unbiased estimation, from the simplest case of panel exactly median-unbiased 
estimation to the more general case of panel SUR median-unbiased 
estimation, which allows for parameter heterogeneity as well as 
heteroskedastic and cross-sectionally correlated disturbances. Yet, these 
developments can still be taken further, for example by considering higher 
order AR processes. In addition, given that several dynamic processes, 
particularly in macroeconomics and finance might be subject to volatility 
clustering, it seems necessary to model explicitly a time varying covariance 
matrix.  

The paper provides three empirical applications that use both the panel as 
well as the time series exactly median-unbiased estimator. Roughly speaking, 
the results obtained in the first two examples are consistent with conditional 
convergence of per capita income among the USA states and with non 
convergence or extremely slow conditional convergence of per capita GDP 
among the Mexican states. In the third example, the panel median-unbiased 
estimates are consistent with the PPP hypothesis in a sample of 14 developing 
countries, although the real exchange processes are extremely persistent and, 
hence, they exhibit quite slow convergence rates. In all previous applications, 
it remains to see how robust are these results when considering other panel 
median-unbiased estimators under less restrictive assumptions. 
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TABLE 1: FRACTILES OF THE LSDV ESTIMATOR IN A DYNAMIC PANEL DATA MODEL WITH 

FIXED EFFECTS 
 

N=14, T+1=303 N=32, T+1=65 N=48, T+1=77 
LSDV 

0.05 0.50 0.95 0.05 0.5 0.95 0.05 0.5 0.95 

0.7500 0.7261 0.7445 0.7605 0.6928 0.7199 0.7453 0.7052 0.7253 0.7438 
0.7600 0.7369 0.7532 0.7699 0.7030 0.7298 0.7548 0.7156 0.7351 0.7534 
0.7700 0.7475 0.7639 0.7792 0.7132 0.7397 0.7638 0.7253 0.7449 0.7632 
0.7800 0.7570 0.7735 0.7892 0.7228 0.7491 0.7738 0.7355 0.7546 0.7727 
0.7900 0.7677 0.7839 0.7991 0.7332 0.7588 0.7825 0.7451 0.7645 0.7822 
0.8000 0.7775 0.7937 0.8086 0.7431 0.7685 0.7922 0.7557 0.7741 0.7918 
0.8100 0.7879 0.8037 0.8180 0.7533 0.7785 0.8012 0.7656 0.7840 0.8011 
0.8200 0.7982 0.8133 0.8274 0.7628 0.7879 0.8107 0.7757 0.7937 0.8106 
0.8300 0.8088 0.8237 0.8374 0.7735 0.7979 0.8202 0.7857 0.8034 0.8201 
0.8400 0.8190 0.8341 0.8478 0.7833 0.8072 0.8288 0.7958 0.8133 0.8293 
0.8500 0.8292 0.8433 0.8568 0.7936 0.8171 0.8383 0.8059 0.8229 0.8387 
0.8600 0.8398 0.8539 0.8667 0.8030 0.8266 0.8477 0.8161 0.8327 0.8480 
0.8700 0.8497 0.8632 0.8761 0.8130 0.8361 0.8563 0.8262 0.8425 0.8576 
0.8800 0.8600 0.8733 0.8856 0.8231 0.8456 0.8656 0.8361 0.8518 0.8667 
0.8900 0.8709 0.8833 0.8947 0.8335 0.8553 0.8748 0.8460 0.8616 0.8760 
0.9000 0.8812 0.8934 0.9041 0.8433 0.8646 0.8838 0.8560 0.8713 0.8853 
0.9100 0.8911 0.9031 0.9134 0.8533 0.8740 0.8926 0.8656 0.8806 0.8940 
0.9200 0.9014 0.9132 0.9238 0.8629 0.8834 0.9015 0.8757 0.8901 0.9032 
0.9300 0.9123 0.9231 0.9324 0.8727 0.8925 0.9099 0.8856 0.8996 0.9119 
0.9400 0.9230 0.9330 0.9416 0.8824 0.9018 0.9186 0.8952 0.9088 0.9210 
0.9500 0.9336 0.9431 0.9513 0.8920 0.9107 0.9269 0.9049 0.9180 0.9297 
0.9600 0.9442 0.9532 0.9604 0.9013 0.9194 0.9349 0.9140 0.9269 0.9381 
0.9700 0.9546 0.9626 0.9692 0.9105 0.9280 0.9431 0.9234 0.9356 0.9464 
0.9800 0.9655 0.9721 0.9783 0.9191 0.9361 0.9506 0.9322 0.9440 0.9543 

0.9900 0.9747 0.9814 0.9863 0.9279 0.9441 0.9579 0.9408 0.9521 0.9619 
1.0000 0.9841 0.9897 0.9939 0.9358 0.9516 0.9647 0.9492 0.9597 0.9689 

Fractiles were tabulated using Monte Carlo simulations with 20,000 replications 
( ) model includes fixed effects in the stationary case and becomes a random walk without drift when a

1=α  

(b ) model includes fixed effects and a linear time trend in the stationary case and individual specific 

drifts when 1=α . 
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TABLE 2: FRACTILES OF THE OLS ESTIMATOR IN A TIME SERIES AR (1) MODEL 
 

T+1=303 a  T+1=65  b T+1=77  b
OLS 

0.05 0.50 0.95 0.05 0.5 0.95 0.05 0.5 0.95 

0.7500 0.6695 0.7410 0.7992 0.4844 0.6764 0.8080 0.5191 0.6893 0.8106 
0.7600 0.6805 0.7516 0.8081 0.4935 0.6860 0.8171 0.5253 0.6988 0.8164 
0.7700 0.6916 0.7616 0.8174 0.5061 0.6943 0.8254 0.5363 0.7075 0.8238 
0.7800 0.7033 0.7708 0.8255 0.5147 0.7029 0.8302 0.5479 0.7169 0.8345 
0.7900 0.7149 0.7814 0.8343 0.5238 0.7118 0.8401 0.5597 0.7261 0.8402 
0.8000 0.7249 0.7910 0.8430 0.5337 0.7223 0.8457 0.5647 0.7344 0.8469 
0.8100 0.7373 0.8011 0.8522 0.5447 0.7295 0.8534 0.5812 0.7437 0.8552 
0.8200 0.7482 0.8110 0.8606 0.5538 0.7402 0.8601 0.5882 0.7529 0.8621 
0.8300 0.7585 0.8205 0.8686 0.5600 0.7484 0.8687 0.6014 0.7632 0.8681 
0.8400 0.7678 0.8303 0.8775 0.5701 0.7574 0.8743 0.6073 0.7716 0.8771 
0.8500 0.7819 0.8407 0.8857 0.5823 0.7663 0.8794 0.6179 0.7797 0.8836 
0.8600 0.7921 0.8503 0.8939 0.5910 0.7728 0.8884 0.6304 0.7895 0.8904 
0.8700 0.8033 0.8607 0.9026 0.6000 0.7829 0.8965 0.6382 0.7977 0.8971 
0.8800 0.8136 0.8709 0.9109 0.6096 0.7912 0.9009 0.6480 0.8060 0.9044 
0.8900 0.8256 0.8801 0.9188 0.6219 0.8001 0.9081 0.6566 0.8153 0.9119 
0.9000 0.8377 0.8901 0.9271 0.6270 0.8063 0.9129 0.6690 0.8232 0.9161 
0.9100 0.8490 0.9000 0.9357 0.6358 0.8137 0.9188 0.6779 0.8327 0.9241 
0.9200 0.8604 0.9101 0.9430 0.6462 0.8228 0.9254 0.6883 0.8397 0.9292 
0.9300 0.8718 0.9203 0.9514 0.6526 0.8291 0.9307 0.6938 0.8481 0.9360 
0.9400 0.8837 0.9300 0.9587 0.6628 0.8375 0.9373 0.7008 0.8543 0.9406 
0.9500 0.8953 0.9395 0.9662 0.6678 0.8432 0.9419 0.7086 0.8621 0.9469 
0.9600 0.9069 0.9496 0.9734 0.6729 0.8490 0.9484 0.7174 0.8691 0.9519 
0.9700 0.9198 0.9590 0.9807 0.6756 0.8537 0.9512 0.7234 0.8738 0.9565 
0.9800 0.9311 0.9687 0.9873 0.6841 0.8578 0.9535 0.7276 0.8786 0.9612 
0.9900 0.9436 0.9777 0.9937 0.6826 0.8611 0.9587 0.7303 0.8822 0.9630 
1.0000 0.9538 0.9857 0.9995 0.6860 0.8612 0.9589 0.7319 0.8824 0.9647 

Fractiles were tabulated using Monte Carlo simulations with 20,000 replications 
( ) model includes an intercept in the stationary case and becomes a random walk without drift when a

1=α  

(b ) the model is trend stationary under the alternative and a random walk with drift under the null. 
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TABLE 3: MEDIAN-UNBIASED POINT ESTIMATES AND 90% CONFIDENCE 

INTERVALS FOR THE 48 USA STATES 
 

Unbiased Estimates Unbiased Estimates State OLS 
Lower Median Upper 

State OLS 
Lower Median Upper 

MI 0.7443 0.6387 0.8096 0.9919 NH 0.8030 0.7298 0.8815 1.0565 
IA 0.7508 0.6488 0.8176 0.9991 WA 0.8033 0.7303 0.8819 1.0569 
IL 0.7558 0.6566 0.8237 1.0045 CT 0.8054 0.7336 0.8845 1.0592 
DE 0.7564 0.6575 0.8245 1.0052 AL 0.8061 0.7347 0.8854 1.0600 
ID 0.7617 0.6658 0.8310 1.0111 AR 0.8065 0.7352 0.8858 1.0604 
VT 0.7620 0.6663 0.8313 1.0114 NJ 0.8093 0.7396 0.8893 1.0635 
NV 0.7639 0.6691 0.8336 1.0135 RI 0.8096 0.7401 0.8897 1.0638 
WI 0.7698 0.6783 0.8408 1.0200 ME 0.8097 0.7402 0.8898 1.0639 
OH 0.7701 0.6787 0.8412 1.0203 ND 0.8124 0.7443 0.8930 1.0669 
MS 0.7708 0.6799 0.8421 1.0211 MD 0.8129 0.7451 0.8936 1.0674 
MN 0.7710 0.6801 0.8423 1.0213 MA 0.8133 0.7457 0.8941 1.0678 
SC 0.7733 0.6838 0.8452 1.0239 WY 0.8148 0.7481 0.8960 1.0695 
WV 0.7769 0.6893 0.8495 1.0278 VA 0.8151 0.7486 0.8964 1.0699 
IN 0.7804 0.6948 0.8539 1.0317 MT 0.8162 0.7503 0.8978 1.0711 
PA 0.7832 0.6991 0.8573 1.0347 NC 0.8173 0.7520 0.8991 1.0723 
CO 0.7843 0.7008 0.8587 1.0360 OR 0.8196 0.7555 0.9018 1.0748 
NE 0.7859 0.7033 0.8606 1.0377 FL 0.8201 0.7564 0.9026 1.0754 
KY 0.7890 0.7080 0.8644 1.0411 OK 0.8210 0.7578 0.9037 1.0764 
NY 0.7901 0.7098 0.8657 1.0423 GA 0.8251 0.7640 0.9086 1.0808 
UT 0.7931 0.7144 0.8694 1.0456 KS 0.8260 0.7655 0.9097 1.0819 
CA 0.7938 0.7155 0.8703 1.0464 LA 0.8345 0.7786 0.9201 1.0912 
MO 0.7941 0.7160 0.8707 1.0467 TX 0.8354 0.7801 0.9213 1.0923 
TN 0.7966 0.7198 0.8737 1.0495 NM 0.8371 0.7828 0.9234 1.0942 
AZ 0.8030 0.7298 0.8816 1.0566 SC 0.8471 0.7982 0.9356 1.1051 
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TABLE 4: MEDIAN-UNBIASED ESTIMATES AND 90% CONFIDENCE INTERVALS  

FOR THE 32 MEXICAN STATES 
 

Unbiased Estimates 
State OLS Lower 

bound 
Median 

Upper 
bound 

Chihuahua 0.5505 0.3242 0.5791 0.8176 
Coahuila de Zaragoza 0.6678 0.5125 0.7293 0.9553 
Zacatecas 0.7037 0.5701 0.7753 0.9975 
Baja California Sur 0.7275 0.6083 0.8058 1.0254 
Sonora 0.7681 0.6735 0.8579 1.0731 
San Luis Potosí 0.8043 0.7317 0.9043 1.1157 
Baja California 0.8050 0.7328 0.9052 1.1165 
Distrito Federal 0.8125 0.7447 0.9147 1.1252 
Durango 0.8510 0.8065 0.9641 1.1704 
Quintana Roo 0.8655 0.8298 0.9826 1.1875 
Nuevo León 0.8819 0.8562 1.0037 1.2067 
Veracruz de Ignacio de la Llave 0.8828 0.8577 1.0049 1.2078 
Morelos 0.8853 0.8617 1.0081 1.2107 
Aguascalientes 0.8978 0.8817 1.0241 1.2254 
Guanajuato 0.9069 0.8963 1.0357 1.2360 
Tamaulipas 0.9140 0.9078 1.0449 1.2445 
Querétaro Arteaga 0.9182 0.9144 1.0502 1.2493 
Puebla 0.9194 0.9164 1.0518 1.2508 
Yucatán 0.9274 0.9292 1.0619 1.2601 
Hidalgo 0.9290 0.9318 1.0640 1.2620 
Colima 0.9400 0.9494 1.0781 1.2749 
Campeche 0.9436 0.9552 1.0827 1.2791 
Sinaloa 0.9515 0.9679 1.0928 1.2884 
Oaxaca 0.9587 0.9795 1.1021 1.2969 
Michoacán de Ocampo 0.9746 1.0049 1.1224 1.3155 
Nayarit 0.9801 1.0138 1.1294 1.3220 
Guerrero 0.9836 1.0194 1.1340 1.3261 
Tlaxcala 0.9867 1.0244 1.1380 1.3298 
Jalisco 0.9895 1.0289 1.1415 1.3331 
Tabasco 0.9970 1.0410 1.1512 1.3419 
México 0.9973 1.0415 1.1516 1.3423 
Chiapas 0.9993 1.0446 1.1541 1.3446 
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TABLE 5: MEDIAN-UNBIASED ESTIMATES AND 90% CONFIDENCE INTERVALS  
FOR THE RER PROCESS IN 14 DEVELOPING COUNTRIES 

 

UNBIASED ESTIMATES 
Country OLS 

Lower 
bound Median Upper bound 

Venezuela 0.9547 0.9359 0.9661 1.0002 
Mexico 0.9626 0.9463 0.9742 1.0068 
Peru 0.9652 0.9497 0.9768 1.0089 
Argentina 0.9657 0.9505 0.9774 1.0094 
Brazil 0.9684 0.9541 0.9802 1.0116 
Indonesia 0.9826 0.9735 0.9949 1.0235 
Hong Kong 0.9832 0.9743 0.9955 1.0239 
Chile 0.9855 0.9775 0.9979 1.0259 
Singapore 0.9863 0.9786 0.9987 1.0266 
Korea 0.9916 0.9860 1.0042 1.0309 
Thailand 0.9920 0.9866 1.0046 1.0313 
Taiwan 0.9951 0.9910 1.0079 1.0339 
Malaysia 0.9961 0.9924 1.0089 1.0347 
Colombia 0.9973 0.9941 1.0101 1.0357 
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