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Abstract

We formulate a Monte Carlo EM algorithm to estimate treatment effect
models involving multiple censored responses. The algorithm has at least
three advantages with respect to traditional methods. First, it does not
require integrating the unobserved information out from the likelihood
function, which reduces the estimation time dramatically and permits to
solve problems involving a high number of latent variables. Second, it
reduces the estimation of the vector of slopes to the calculation of a GLS
estimator, and numerical techniques are required only to estimate the
elements in the disturbance covariance matrix. Third, it has low sensitivity
to the selection of starting values and fragile identification. We illustrate the
method by estimating a 3-equation treatment model; then we compare the
performance of our algorithm against a quasi-Newton optimization that uses
numerical integration.

Resumen

Este articulo presenta un algoritmo Monte Carlo EM para estimar modelos
de tratamientos con respuestas censuradas multiples. El algoritmo tiene al
menos tres ventajas respecto a métodos tradicionales. Primero, no requiere
integraciobn numeérica, lo cual reduce dramaticamente el tiempo de
estimacion. Segundo, la estimacion del vector de pendientes se reduce al
calculo de un estimador GLS, y métodos numéricos son requeridos
solamente para estimar los elementos en la matriz de covarianzas de los
errores. Tercero, el método tiene una baja sensibilidad a la selecciéon de
valores iniciales y a identificacion fragil. Como ilustraciéon, el algoritmo es
aplicado a la estimacién de un modelo de tratamiento de tres ecuaciones.
Luego, las propiedades del algoritmo son comparadas contra técnicas que
combinan integracion numérica y métodos de optimizacion tradicionales.






FIML Estimation of Treatment Effect Models with Endogenous Selection and...

Introduction

Usually, a treatment effect model includes a single participation (selection)
equation and one or more response equations, where the last ones include an
endogenous dummy for participation. All the equations are linked through the
correlations between their error terms. When only one response exists, the
two-equation system can be estimated either by the 2-step Heckman method
or by full information maximum likelihood (FIML), being the later more
efficient than the former. Multi-objective programs, however, involve not one
but several individual responses that program administrators aim to influence.
In cases where individuals determine jointly the optimal levels of the
different responses, a multivariate framework handling all the responses
simultaneously is more adequate than analyzing each response variable
independently (Dorfman, 2001; Cooper, 2003). FIML estimation of a
multivariate treatment model can be challenging for two reasons. First,
responses are often limited dependent or discrete, which requires the
inclusion of latent variables in the model. Second, most optimization
algorithms are sensitive to the selection of starting values and problems of
“fragile identification” when latent variables are involved. We discuss these
issues in the next paragraphs.

Systems of equations with latent structures are abundant in applied
economics literature. Typically, econometricians use latent structures when
dealing with variables that are partially observed but which behavior can be
modeled by assuming the existence of a continuous unobserved counterpart
that behaves linearly. Thus, latent variables allow us handling dichotomous,
polytomous, or censored variables without much trouble. Nonetheless, the use
of latent variables can be very costly computationally or even make the
estimation unfeasible in a multivariate framework. If the model is going to be
estimated by FIML, then both the number and the dimensionality of the
integral terms in the likelihood function increase with the number of latent
variables in the model. High dimensional integration slows the estimation
down and it can even make the estimation impossible.

A second and recurrent issue in FIML estimation is the selection of starting
values in order to initiate the optimization routine. OLS estimates are the
most frequent choice for slope vector; yet, they are biased since the
dependent variable is not observed fully and, in some models, it is not
observed at all. The main challenge in a multivariate framework, however, is
not finding starting values for the slopes but for the elements in the
disturbance covariance matrix. When the starting values are not in the
approximation area of the optimum, commercial routines frequently cannot
identify the covariance terms; the usual evidence of this problem is that
algorithms cannot keep the covariance estimates in the parameter space (e.g.
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the magnitude of the correlation coefficients are greater than one, or the
covariance matrix is not longer positive definite).

Finally, a third issue arises from the inability of many conventional
optimization algorithms to identify the parameters of these models even
though conditions for formal identification are satisfied. “Fragile”
identification, as it called by Keane (1992), tends to happen when the
objective function shows little variation in a wide range of parameter values
around the maximum, which prevents convergence of gradient-based
algorithms since line-search methods cannot progress to the optimum.

For equation systems involving three or more latent variables, FIML
procedures that use quadrature integration are often impractical. This “curse
of dimensionality” has, however, been partially overcome in the last decade
by the use of probability simulators (McFadden, 1989; Borsch-Supan and
Hajivassiliou, 1993; Geweke et al., 1994) and Monte Carlo and Quasi-Monte
Carlo integration methods (Sobol, 1998). Yet, the focus of these approaches is
to make the integration of the likelihood function feasible, while the issues of
starting values and fragile identification remain.

Instead of placing the attention on calculating the integrals in the
likelihood function, a Monte Carlo EM (MCEM) algorithm focuses on the latent
continuum underlying the observed information. Similar to its deterministic
version (the EM algorithm), a MCEM algorithm executes two steps iteratively:
the expectation step and the maximization step. In the expectation step, a
Gibbs sampler circumvents the integration problem by imputing the
unobserved information (Casella and George, 1992). Then, after the
continuum has been “restored”, the maximization step does not differ much
from maximizing the likelihood function of a set of seemingly unrelated
regressions (SUR). We proceed sequentially. First, the vector of slopes is
obtained from the generalized linear squares (GLS) estimator of a modified
SUR model. Then, the elements in the disturbance covariance matrix are
estimated numerically and conditional on the slopes calculated previously. We
show that this procedure reduces dramatically the sensibility of the algorithm
to the selection of starting values and fragile identification.

The remaining of this article is organized in the following way. The next
section formulates the MCEM algorithm and exemplifies how it works by
estimating a system of three equations and three latent variables. The second
section solves the same problem by numerical integration. The outputs of
both approaches are then compared focusing on the sensibility to starting
values of the two methods. The only reason to use a 3-equation model is to
allow comparing between the two approaches; the extension to higher
dimensions of the MCEM algorithm is straightforward, but making traditional
numerical integration feasible is not. The third and last section gives final
remarks.
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1. The Monte Carlo Expectation-Maximization (MCEM) algorithm

The Expectation-Maximization (EM) algorithm as an iterative procedure to
compute maximum likelihood estimates when *“... observations can be viewed
as incomplete data” Dempster et al. (1977). To give a flavor of how the

algorithm works consider the many-to-one mapping zeZ >y = y(z)eY . The
information z in Z is not observed directly but through its observed
realization y in Y . In words, zis only know to lie in Z(y), the subset of Z
determined by the equation y= y(z), where vy is the observed (measurable)

data. Let the complete data be written as (y,z), where z is the unobserved

information. Then the log-likelihood function of the observed information can
be written as

((61y)=1In L(0|y)=ln_[z(y)L(0|y,z)dz (1)

The integrals present in (1) can make the maximization of €(6?|y)

cumbersome or even impossible to solve by standard optimization methods.
Instead of trying to solve (1) directly, the EM algorithm focuses on the

complete-information log-likelihood £°(<9|y,z) and maximizes E[fc(¢9|y,z)}
by executing iteratively two steps. The first one is called Expectation step or
E-step, which at iteration m+1 computes Q(&|0™,y)=E[¢°(0]y,z)], where

E[¢°(0]y,2)] is the expectation (on Z) of the complete-information log-

likelihood conditional on the observed information and provided that the
conditional density f(z|y,¢9(m)) is known. The E-step is followed by the

Maximization step or M-step, which maximizes Q(6[6'™,y) to find 6™?.

Then the procedure is repeated until convergence is attained. Often,
however, this deterministic version of the EM algorithm has also to deal with
hefty integrals in the calculation of the expectations in the E-step.

The stochastic version of the EM algorithm avoids troublesome
computations in the E-step by imputing the unobserved information
conditional on what is observed and distribution assumptions. In this approach

K
the term Q(#]0™,y) is approximated by the mean %ZQ(@,Z‘” |y), where
k=1

the z¥ are random samples from f(z|9(m),y) (Wei and Tanner, 1990). No

integrals need to be estimated in this procedure. Once the unobserved
information is imputed, the latent continuum is made “visible” and the
estimation can be carried out as we were solving a standard system of linear
equations.
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1.1. Implementing the Monte Carlo EM algorithm
To formulate the MCEM algorithm consider the k-equation system

y;i =X, B+ &,
:Y; =7, Yii + X0 By + & )

y:i =7 Yn + X B + €
Where:
b, if y;>u

]

yi=qy; if I<yj<u  j=2.k

1i

1ify, >0

0 ify, <0 )
a, if y;<I

i.e. y, is dichotomous and variablesy; (j=2,..k) are censored from below at

a; and from above at b, (in case a response is not censored, just consider

a,=-o and b, =«). Thus, the variables y; are not observed fully and the

problem can be considered as one with incomplete data; therefore, an EM
approach applies. The disturbance terms in (2) are assumed to follow a k-

variate normal distribution N(0,%) with covariance

1 ) 6‘915k
2
G G e G
gé. £, &9
Y = .12 .2 ] .zk (3)
0 G o 0'2

18 28k %
Where ofl =1 is the usual restriction to ensure identification of the

coefficients in an equation with a dichotomous dependent variable.
The complete-data likelihood function (i.e. as if the latent variables were
observed) for the equation system is:

1 &2,
L(0,2|Z)=H Wexp - 2 }]

*

&y i — Xy B

) *_ X
Where ez(ﬂl’]/zlﬂz’...,}/k’ﬁk)’ and £ = ‘9:2| _ Yai 7/2y1.| 2|ﬂ2

& yl:i =7 Yni — XiBx

Correspondingly, the complete-data log-likelihood function and its
expectation are
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€°(0,2|z)=—k7NIn(27r)—%ln|Z|—%Ztr(z—lgi8;)
E[(8.2]2)]= -%Nln (Zﬁ)—%ln |Z|—%tr(zlz E[gig;]j )

Where N is the total number of observations and the expectation operator
indicates expectation conditional on observed information and distribution
assumptions. The E-step is straightforward from (4) and, at iteration m+1,
requires the calculation of:
Yo — Xyl Yo — Xyl
Q (0|0(m),2(m)1 y) _ E|:‘9i‘9i' |0(m),2(m)] y] -E y;i _72y%i = Xub; y;i _72y?i - Xub; |0(m),2(m)l y

y:i =7V — X By y;i =7V — KB

/‘521) - XuB ﬂ)(,g]) - XuB
_ Jiz(m) + ﬂf,;) — 7Y — Xl ,U(y;) = 7Y — X (5)
:uigl) = 7Y = X ﬂ(yg]) = 7Y — X
oAm oM.
Yii Y1i Yui
Where o7™ =Cov (v}, ¥ 67,2, y)=| i (6)
(m), o2m
Yai Yki Yki
ﬂg‘) E [yl*l |9(m)12(m)’ y:|
and Pol= : (7

ﬂ(m) E [y*k*i | o™ ™ y]

Vi

The covariance matrix o™ in (6) and the vector of means in (7) can be
estimated by Gibbs sampling (Casella and George, 1992) from the joint
distribution of (yllyk,) conditional on parameters (O(m),z(m)) and the
observed information y. Additionally, given the distribution of the
disturbances in (3), the distribution of (y;,---,y;) at iteration m is

N (yi(”‘),z(”‘)) , Where:
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X" 1 on o ol
(m) (m) (m) (m) ... (m)

U O TR RETe e T L Cor T T e (8)
}/Igm)yli + xkiﬁlgm) ngz O'g?k ng)

1.2. The Gibbs sampler
The moments in (6) and (7) could be easily calculated if the marginal densities

(conditional on parameters and observed information) of vy, y,, and y;

were known. However, obtaining those marginal densities may require solving
hefty integrals. Instead of tackling the problem by integration, the Gibbs
sampler provides a way to generate samples from the marginal distributions
without requiring analytical expressions for the densities. The moments of
interest can then be estimated from the simulated samples. Before
proceeding, let consider the following notation (Natarajan et al. 2000)

Y X, 7" A"
_ Yiai N Xj,li (m) _ 75?1) (m) _ ﬂﬁ)
Yiri =| i T x 75 = m) By =l
Y i Vi P
Vi X 7 i

The implementation of the sampler begins with determining the
distribution of each y; conditional on the value of the rest of the dependent

variables yi’lij. Under the normality assumption, these conditional
distributions are univariate normal. Thus, means x;;_;, and variances ajzl_j at
the m+1 iteration can be estimated by
Kty = E(y} y;—j’e(m)’z(m))
4 9)

=X, 8"+ cov(y;‘ Vi 2 )[COV( Vi ‘z(m) )} (y;—j A X”fjﬂf”;))

oi) = var(y;|yp ;.0 =)
(10)

1

- var(y’;i ‘Z(m) )— cov( y}‘ Vi s )[cov( Vi ‘Z(m) )] cov( y;‘ Vi z(m )

s |
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The next step is to sample iteratively from these conditional distributions
in order to simulate a sample for the unobserved values of each y;. These

samples will in turn allow estimating the values in (6) and (7). Since the
simulations for y, must be done conditional on its corresponding observed
information y,, the implementation procedure depends on the structure
imposed by y, on vy .

The observed counterpart of y, in the first equation in (2) is dichotomous
with vy, being positive if y. equals one and non-positive if y, equals zero.
Accordingly, it is necessary to simulate y, from a normal distribution with
mean 4! and variance o7 truncated below at zero if y, equals one and
truncated above at zero if y,; equals zero.

Variables y; (j=2.k) are observed in the interval (ab;).
Consequently, it is only necessary to simulate them when y; =a; or y, =b;.
Thus, these variables must be simulated from normal distributions with means
ygﬂ})(_j) and variances ojziﬁf‘j) truncated above at a; when y; =a; and truncated
below at b, when y, =b,. When a, <y, <b,, we set y; =y,

We use the inverse distribution method to sample from a truncated normal
distribution. According to Devroye (1986, p39), a random draw from a normal

distribution N (o) limited to the interval [I,u] is given by
y=pu+o®*(R+U (R, -R)) (11)
Where P :db(l_—’uj, P, :CD(U_—”j and U is a random draw from the
(o2 (o2

standard uniform distribution. A complete set of starting vectors vy, is
necessary to start the Gibbs sampler. In this study y; was set equal to zero
Vi, j when the observed variable was dichotomous and equal to y; when
censored. The simulation was then repeated iteratively until completing a
sequence y'@,...y®", where K™ is a number large enough to ensure
convergence. Then we eliminate a number k.. of simulations from the
beginning of the sequence. The remaining observations in the sequence are

used to obtain sample estimate for szi(m) and ,uﬁi'”) in (6) and (7). Notice that
when yj is fully observed (i.e. when yj=y;) then o'”. =0 and

pM =y, vmr,s.

y}i
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1.3. Maximization Step
After obtaining szi(m) and ,ugim), we move to the Maximization step. From
(4) and (5) we maximize:
¢ m gm )= _ kN N Ly s (m) 5 (m)
E[€ (0.216",x ,y)J— > In(27) -2 In[z] | 2 ZQi(ew Zy)| (12)

Notice that, except for the covariance matrices af('“) present in the
Q, (0|0(m),2(m), y) terms, the expression in (12) is the log-likelihood function of

a system of linear equations, where the unobserved information has been
replaced by its expected values. As in Meg and Rubin (1993), we use two
conditional maximization steps in order to maximize the expression in (12)
with respect to @ and the elements in X. The first maximization step

maximizes (12) with respect to @ conditional on =™ to produce 8™ . This is
followed by a maximization on the elements of £ conditional on the recently

updated 6™ in order to obtain =™
It is clear from (5) that the maximizer in the first conditional maximization
is the generalized least square estimator

- I -1
.9(””1)=[xd(z("‘>®|N) xd} X, (Zm @1y ) (13)
Where:
X, 0 0
> 0 X, - 0 . . . . . .
Xe=| . . . , XJ.:[yli :Xj] (j=2..k), 1, is a N-dimensional
0 0 - X,

identity matrix and ,usi“) is a column vector of dimension Nk constructed by
stacking vertically the elements ugT) from (7). After plugging (13) in (12),
=™ js obtained by maximizing

. (1) (m) _ kN N 1 4 (i) | p(m) < (m) 14
E[e (216", ,y)J_ > In(27) - In[z] Etr(z ZQi(a o™, s y)] (14)

with respect to the k(k-1)/2+k-1 different elements in £ and subject to

0522:1. The maximization of (14) can be accomplished by standard

commercial routines. The objective function is simple enough to obtain a
simple analytical expression for the first order conditions, which are

1 (m41) | glm) o(m) A _
Z_WZQ(Q s> ,y)+W2Az_o (15)

s |
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where 1 is a scalar Lagrange multiplier and A is a matrix whose only non-
zero element is a one in the position (1,1) An estimate of = can be obtained

by solving numerically either (14) or (15). In our simulations we found that
solving (15) is faster and shows fewer convergence problems.

1.4. Monitoring convergence and stopping rules

It is inefficient to begin with large Gibbs samples since MCEM estimates are
likely to be distant from the true maximizer during the first iterations (Wei
and Tanner, 1990). It is more reasonable to begin with small samples and to

make K™ an increasing function of m in order to reduce the Monte Carlo
error as the algorithm approaches the maximizer. Alternatively, convergence
monitoring can be accomplished by plotting the expected log-likelihood versus
iteration number and the algorithm is stopped manually when the process is
observed to stabilize.

More elaborate approaches consider evaluating the Monte Carlo error at

iteration m and use that estimation both to determine K™ and to evaluate
convergence. These methods can be classified either as likelihood-distance-
based or as parameter-distance-based depending on whether they focus on

likelihood differences ‘E[ﬁc(s(”)]—E[ﬁc(s(“))] or parameter differences

‘.9“) ~ 9 where 9 is the estimation of the parameter vector at iteration

J (Chan and Ledolter, 1995; Eickhoff et al., 2004; Booth and Hobert, 1999).
In this study, we use a linear rate of increment for the size of the Gibbs
sample and a stopping ruled based both on likelihood and parameter
distances. The idea is simply to automate the plotting method of Wei and
Tanner (1990) by introducing the following criteria:

R I
A o

j=M-J
Where 1951) is the estimate of the r component of the parameter vector at

iteration j, M is the current number of iterations, and J is a researcher
choice. In this work, J was set equal to 0.2xM . The algorithm was stopped
only when both criteria were satisfied simultaneously for at least five
consecutive iterations. This last requirement was introduced to avoid false
convergence due to the tendency of the MCEM algorithm to stall temporarily
before reaching the maximizer. The criteria in (16) are simple to implement
and more stringent than those presented in the articles cited above and might
increase unnecessarily the number of iterations required for convergence.
However, given the speed of today’s computer, the computational cost is not
very high.

gl _ gD

304

r

J

] <107 (16)
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1.5. Estimation of the Information matrix

The asymptotic standard errors of the estimates are not among the outputs of
the EM algorithm and additional code needs to be appended to the algorithm
in order to estimate them. Let the complete information log-likelihood

function be z°(0;z), where @ is the full set of parameters to estimate. Then,

according to the “missing information principle” (Orchard and Woodbury,
1972), the information matrix of the observed information is:

1(6;y)=1°(6;2)-1"(6;2] y) 17)
Where I°(0;z):—E[H°(0;z)] is the complete information matrix,
01" (6;2)

H®(6;2)=

the “missing information” matrix. Louis (1982) showed that this last matrix
could be written as:

is the complete information Hessian, and Im(¢9;2|y) S

1" (6;2] y#"{%}zVﬂ[Sc(ﬁ;zﬂ: 8)
E[s°(6:2)S° (6:2) |- E[8°(6:2) JE[° (6:2)']
or° (6;2)

Where S°(¢9;z)= is the complete information score vector. All the

expectations are taken with respect to the distribution f(zly,ﬁEM), where

6" is the final MCEM estimator. The evaluation of all the expectations
involved commonly prevents the estimation of the observed information
matrix in (18) by direct calculation. Monte Carlo estimates of the expected
complete information Hessian and score can be used to circumvent the
problem. To sum up, the procedure implemented in this study is:

Step 1. Use the Gibbs sampler described above to simulate a sequence

y® ...,y &) while holding @ =6 . Eliminate a number r,_ of simulations

burn
from the beginning of the sequence.
Step 2. Use the remaining simulations to estimate the expectation of
the complete and missing information matrices by:

(0% 2) =S (0%0) =3 S 0%y
1" (6% x| y):é{E[Sf (6%:2,)s’ (GE"";zi)}— E[SiC (677, )] E[Sf(é’EM;zi )J}
S swfomsnn]|

= iNZl{%ile“) (6™ v, 1y, )55 (6%, 1y,) —%285‘” (65 1y ) g 2

|+~

Expressions for the contributions from each observation to the Hessian and
score are standard results from the theory of the multivariate normal
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distribution. A sample with R=3300 and r,,, =300 was used in this study.

Results of the Monte Carlo EM estimation of equation system (2) are presented
in Table 1.

2. The numerical integration approach

In this section we solve by numerical integration the same model and data
used to illustrate the MCEM algorithm. The performances of the two
approaches are then compared.

The observed-information log-likelihood function for the equation system
(2) with a; =0, b; =, and k=3is

000 0 0 x

L= [ [ [ f (i Yo var ) dyadyzdys + > In [ [ F(vi v, Vs )dyidydys + Z lnH (Vi Vi ¥ar) Qyzly, +

%1i=0 0 -0 0 Vi=l 00 0 =0
¥2i=0 ¥2i=0 yzi:O
¥3i=0 ¥3i=0 ¥3i>0

> J jlnf Vi Yai ys.)dyl.dy3.+2 In J jlnf Vi Yair Var ) Qyzly;, + Z lnj I Vi Yair Vo ) dyglys +

¥1i=0 —0 0 —0 0 0 0
¥2i>0 ‘/2 0 Yz|>0
¥3i=0 ¥3i>0 ¥3i=0

0
Z In I f (yll | y2|! y3| )dyll + z In_[ yl" yz" y3')dy1'
¥1i=0 —0 =l (19)

¥,i>0 ¥,i >0
¥3i>0 ¥3i >0

Where f() is a trivariate normal probability density function (pdf.). It turns

out that all the integrals in the likelihood function can be written as products
of the trivariate, bivariate, and univariate standard normal cumulative density
function (cdf) and pdf. Instead of using three-dimensional quadratures, we
programmed the cdf functions according to the methodology pioneered by
Steck (1958) and Sowden and Ashford (1969) to accelerate the estimation.
This methodology allows reducing the high-dimensional normal cdf to
functions involving only 1-dimensional integrals and the univariate normal cdf.
As mentioned before, an alternative to handle the integrals is to use
probability simulators. The information matrix was calculated from a finite-
difference estimation of the Hessian of the objective function.

3. Comparison between numerical integration and MCEM
estimates

3.1. Simulation study

In order to compare both estimation methods, we run a simulation study. We
consider dos regressors in each of the three equations: a constant and a
continuous variable, which we simulated from a uniform distribution. We

simulated the continuous regressor in the range [—2,2] for the selection
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equation, in [1,2] for the first response equation, and in [-1,1] for the second

response equation; all of regressors were kept fixed during the simulation
study. We simulated the latent dependent variables from a trivariate normal

distribution N(x,X), where:

XA, . . . 1 -05 05
H P B (_:J B, (—0.5j Ps (0.5}
X3 fs 05 02 1

The dependent observed variables were then obtained by imposing that
the dependent variable is dichotomous for the selection equation and
censored for the response equations. We replicated the estimation 500 times,
which allows considering samples with a broad variation in the number of
censored observations. We considered samples of 500 simulated observations
and OLS estimates as starting values in each one of the 500 estimations.
Estimation times ranged between 5 and 15 minutes depending mainly on the
level of censoring in the simulated samples.’ To evaluate the sensibility to the
selection of starting values, we run a smaller simulation study using vectors of
zeros and vectors of numbers randomly generated from the uniform
distribution for the slopes and disturbance covariance matrices calculated
from the corresponding residuals. We observed no effect whatsoever on the
performance of the MCEM algorithm. Figure 1 shows histograms for the
estimates obtained for selected parameters.

FIGURE 1. SIMULATION RESULTS FOR SELECTED PARAMETERS

140

140

We were unable to perform a similar analysis for the combination of
numerical integration and quasi-Newton optimization since the estimation

I On a Pentium IV, | GB RAM, Windows XP, Matlab 7.01
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time (45 to 140 minutes) made it computationally prohibitive. Instead, we
replicated the estimation only twenty times starting from the OLS estimates.
Only a fourth of the estimations converged correctly to the maximum, while
all the rest stopped in a neighborhood of the optimum because the algorithm
was unable to make further progress. All the unsuccessful estimations
generated finite-difference Hessians that were not negative definite and,
consequently, they failed in providing a correct covariance matrix for the
estimates. Finally, to evaluate the sensibility to starting values, we try several
random combinations of starting values including vector of zeros for the
slopes of some or all the equations. For almost all the combinations we tried,
the algorithms based on quasi-Newton methods failed to converge.

3.2. Study on real data

We applied the method on data from a survey administered to Maryland
farmers in order to evaluate a multi-objective conservation cost-sharing
program. The program is voluntary, and the parameters of primary interest
are y, and y,. Thus, the first equation in our three-equation system models

the participation decision (only a dichotomous response —yes or no— variable
is observed), while the second and third equations model two conservation
responses that program administrators want to influence. Variable y,, and vy,

are the proportion of the farm under permanent vegetative cover and the
proportion of the area cropped on which cover crops are planted,
respectively. Both responses are proportions and thus they are censored from
below at cero for individuals who find the use of these practices not
profitable (i.e. we observe y, =0 and/or y, =0 for them). Additionally, it

might be possible to observe censoring at one for some individuals finding the
practices highly profitable. Our sample is abundant in observations censored
at zero, but not a single case censored at one was detected. The matrices of
explanatory variables X,, X,, and X, include information about farmer

characteristics (such as age and formal education), farm topography, farm
size, cropping patterns, distance to water bodies, previous history of
participation in conservation programs, and location dummies.

The iteration paths for the expected log-likelihood function and selected
parameters are presented in Figure 2. OLS estimates were used as starting
values. The routine converged after 535 iterations. The Gibbs sampler was
started with 300 simulations and increased in an amount of 15 simulations per

iteration, i.e. K™ =300+15(m-1). The number of dismissed cases, K, , was
kept constant at 150. Estimates are presented in Table 1.

burn 7

DIVISION DE ECONOMIA I!IHI



Ricardo Smith

TABLE 1. FIML ESTIMATES BY THE MONTE CARLO EM ALGORITHM

Equation 1 Equation 2 Equation 3

Estimate Std. Estimate Std. Estimate Std.
error error error

7> -0.1442 0.1730 73 0.1833 0.1822

B -0.9004 0.5406 B = -0.4581 0.2029 S = 1.4197 0.1535

B, | -2.0180 | 0.9021 | B, | -0.1678 | 0.2711 | B, | -0.4695 | 0.2872

B 0.3352 0.2081 @ B, @ 0.2190 0.0673 @ f;  -0.1113 | 0.0784

B, 0.0193 0.3706 = B, @ 0.0072 0.1135 f, -0.3973  0.1493

pBs  0.1183 0.2550 f = 0.1334 0.0867 f. -0.1474  0.1066

Bs  0.2423 0.1449 @ B, @ 0.1782 0.0432 | s @ 0.0460 0.0493

B, 0.4204 0.2106 f, -0.0247 0.1087 f, 0.0735 0.1113

B 0.1903 0.1949 f; -0.0441 0.1088 S  0.0298 0.0743

B, 0.9313 0.2258 @/, 0.0039 0.0084 @ f, -0.0059  0.0055

o, 0.2191 | 0.0754 @ 0, -0.5158 | 0.0544

O,; | -0.0358 0.0236 | O, 0.2439 0.0318 | Og 0.3403 0.0441

The expected treatment effect for practice j=2,3 and farm i, conditional
on program participation and after controlling for censoring, is:

(Dz(xliﬂl'yj-i_axjiﬂj'pljJ
i
D(Xyuh)

Where X; and g, are the set of regressors and the slopes in the equation

ETE, =,

of practice | respectively; ®2(-) and CD() are correspondingly the bivariate
and univariate standard normal cdf, and p,; is the correlation between the

error terms in the selection equation and the equation for practice j. The

average expected treatment effect on the whole sample is -0.3436 for
permanent vegetative cover and 0.1143 for the use of cover crops. The
corresponding standard errors are 0.0333 and 0.0002, which were estimated
by the delta method. These results agree with theoretical results (e.g. Khanna
et al., 2002), which indicates that cost sharing programs reduces set-aside
land and increases the use of conservation practices linked to production
activities.
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FIGURE 2. ITERATION PATHS FOR
A) EXPECTED LOG-LIKELIHOOD, B) 7,,C) J; AND D) O,
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Conclusions

This article presented a MCEM algorithm to estimate treatment effect models
involving multiple censored responses. The algorithm has a number of
advantages over traditional methods. First, it does not require integrating the
unobserved information out from the likelihood function, which reduces the
estimation time dramatically as no numerical integration is needed and
permits to solve problems involving more than three latent variables. Second,
it reduces the estimation of the vector of slopes to the calculation of a GLS
estimator and numerical methods are required only to estimate the elements
in the disturbance covariance matrix. Since the GLS estimator and the
gradient and Hessian of the objective function for the estimation of the
disturbance covariance matrix have closed forms, is easier to keep the whole
set of parameters in the parameter space during the procedure and almost no
time is consumed in the Maximization step. Additionally, the MCEM reduces
substantially the problems of “fragile” identification and selection of starting
values, which are serious limitations of traditional approaches. Finally, the
accuracy of the estimates of the standard errors can be improved
inexpensively by increasing the number of simulations of the Information
matrix.
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